COMMUTATIVE SUBALGEBRA OF $L^1(G)$ ASSOCIATED
WITH A SUBELLiptic OPERATOR ON A LIE GROUP G

BY A. HULANICKI

Communicated by H. Kesten, June 3, 1974

1. Introduction. Let G be a Lie group and LG its Lie algebra regarded as the space of differential operators of the first order which commute with the right translations. If X_1, \ldots, X_n is a basis of LG, then the operator $L = X_1^2 + \cdots + X_n^2$ is called a laplacian on G. In [4] the commutative Banach \ast-subalgebra of $L^1(G)$ generated by the fundamental solution of the heat equation $(\partial/\partial t - L)u = 0$ was studied, and in case of compact extensions of nilpotent groups it proved to be useful in studying spectral properties of L on various $L^p(G)$ spaces, as well as in proving tauberian Wiener theorems concerning Gauss and Poisson integrals. In [6] and [9] a powerful method of singular integrals on the class of nilpotent Lie groups admitting one-parameter groups of dialations was developed. In [1] and [2] Folland and Stein studied the relation of these to certain subelliptic operators on the Heisenberg group. The idea is that in various important cases, although for a given one-parameter group of dialations $\{\delta_s\}$, $s > 0$, of G there is no basis in LG such that $\delta_s \ast L = s \lambda L$ where λ is a scalar, there exists a set of generators X_1, \ldots, X_k of the Lie algebra LG such that $\delta_s \ast X_j = s X_j$, $j = 1, \ldots, k$. Let
\begin{equation}
L = X_1^2 + \cdots + X_k^2.
\end{equation}
Then, of course,
\begin{equation}
\delta_s \ast L = s^2 L.
\end{equation}
The fact that X_1, \ldots, X_k generate LG as a Lie algebra implies that L is a subelliptic operator. Using this fact we shall construct the Gauss and Poisson kernels for the operator L, and via a study of the subalgebra of $L^1(G)$ generated by these, we obtain the equality of the spectra of L on various $L^p(G)$ spaces as well as the corresponding tauberian Wiener theorems. More-

Key words and phrases. Harmonic analysis on nilpotent Lie groups, subelliptic operators, Gauss and Poisson kernels, Wiener's tauberian property.

\footnote{Partially supported by National Science Foundation Grant 20–563B.}

Copyright © 1975, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
over (2) implies very natural transformation rules for the Gauss and Poisson kernels under the dialations.

The author would like to express his gratitude to Professors Joe Jenkins, R. Nirenberg and M. Range for many illuminating conversations about the subject of this note.

2. Theorems. Consider L as a densely defined symmetric operator on $L^2(G)$. Let $L' = L$ be its adjoint. Then, as it follows from [3], L is a selfadjoint nonpositive definite operator.

From [7] and [8] we deduce the following version of

Sobolev's Lemma. There exists an N such that for every compact set $Ω$ in G there exists a constant C such that $|f(x)| \leq C\sum_{j=0}^{N} |\langle f, \phi_j \rangle|$ for all x in $Ω$ and f in $\mathcal{D}(1,N)$.

Now we are able to define the Gauss and Poisson kernel pretty much the same way as in [4] and [11].

THEOREM 1. There exists a unique one-parameter semigroup $\{p_t\}_{t>0}$ of (i) nonnegative, (ii) normalized functions in $L^p(G)$ such that

(iii) $p_{s+t} = p_s p_t$ for every f in $L^p(G)$,

(iv) $\lim_{t \to 0} |p_t f|_p = 0$, $1 \leq p < \infty$,

(v) the function $(0, \infty) \times G \ni t, x \to p_t(x)e^x$ is C^∞, and if $u(t, x) = p_t \ast f(x)$,

(4) \[\frac{d}{dt} - L)u(t, x) = 0 \]

for all $f \in L^p(G)$, $1 \leq p \leq \infty$.

Let

(5) \[p^r(x) = (\pi)^{-\frac{1}{2}} \int_0^\infty \lambda^{-\frac{1}{2}} e^{-\lambda} p_{t^2/4\lambda} d\lambda. \]

Then $\{p^r\}_{r>0}$ is a semigroup of functions in $L^1(G)$ such that (i)--(iv) are satisfied, and if $u(t, x) = p^r \ast f$, then

(6) \[(d^2/dt^2 + L)u(t, x) = 0 \]

for all $f \in L^p(G)$, $1 \leq p \leq \infty$.

Understandably enough, the function $u(t, x) = p_t \ast f(x)$ is called the Gauss integral of f, and the function $v(t, x) = p^r \ast f(x)$ is called the Poisson integral of f.

We have also the following version of Nelson’s lemma [10].
Theorem 2. For every nonnegative submultiplicative function \(\phi \) on \(G \) and every \(t_0 > 0 \), there is a constant \(C \) such that \(\int p_t(x) \phi(x) \, dx < C \) for all \(t < t_0 \).

Let \(A = \text{lin} \{ p_t : t > 0 \} \). Then \(A \) is a commutative *-subalgebra of \(L^1(G) \). Let \(A \) denote its closure in the \(L^1 \) norm. Then of course, \(p^t \in A \).

From now on we assume that the group \(G \) is of polynomial growth (e.g. a compact extension of a nilpotent group; cf. [5]).

Let \(\text{Sp}_p = \{ \lambda \in \mathbb{C} : (\lambda - L)^{-1} \text{ is a bounded operator on } L^p(G) \} \).

Theorem 3. \(A \) is symmetric, i.e. \(\text{Sp}_p f * f^* \) is a real nonnegative for all \(f \) in \(A \), hence \(\text{Sp}_p L = \text{Sp}_2 L \) for all \(1 < p < \infty \).

Theorem 4. The Gelfand space of \(A \) is naturally homeomorphic with \(\text{Sp}_2 L \).

Theorem 5. There is an integer \(r \) depending on the group only such that the functions \(F \in C'_c(\mathbb{R}) \) operate on the hermitian functions \(f \) in \(A \) into \(A \).

Theorem 6. The algebra \(A \) is regular and the set of functions \(f \) in \(A \), such that \(\text{supp} \, \hat{f} \) is compact, is dense in \(A \). Hence

(i) Every proper ideal of \(A \) is annihilated by a nonzero homomorphism of \(A \) into \(C \).

(ii) None of the \(p_t \)'s and \(P^t \)'s, \(t > 0 \), is contained in a proper left (or right) ideal of \(L^1(G) \).

(iii) If \(u(t, x) \) is a solution of (4) or (6) such that \(u(0, x) = \phi(x) \) and \(|u(t, \cdot)|_\infty \leq C, t > 0 \), then, if for a \(t_0 > 0 \), \(\lim_{x \to \infty} u(t_0, x) = a \), then \(\lim_{x \to \infty} f * \phi(x) = a f \).

Now let \(G \) be a connected, simply-connected nilpotent Lie group and let \(\{ \delta_s \}_{s > 0} \) be a one-parameter group of dialations of \(G \). Suppose that \(X_1, \ldots, X_k \) generate \(LG \) as a Lie algebra and \(\delta_s \cdot X_j = s X_j \). For important examples where such a situation occurs see [1], [2], [6], [9], [12]. Let \(d(\delta_s x) = s^r dx \), and let \(L = X_1^2 + \cdots + X_k^2 \). We then have

(7) \(\delta_s \cdot L = s^2 L \).

From (7) we can easily deduce the following formulae

\[p_t(x) = t^{-r/2} p(\delta_{t^{-1}}(x)) \quad \text{and} \quad P^s(x) = t^{-r} P^1(\delta_{t^{-1}}(x)). \]

Clearly enough, also the whole algebra \(A \) is stable under automorphisms \(\delta_s^* \), \(s > 0 \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The connection of p_t and P^t to the homogeneous norm functions (cf. [6]) and singular integrals on G we hope to study in a subsequent paper. Details and proofs will appear elsewhere.

REFERENCES

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, UL. KOPERNIKA 18, WROCŁAW, POLAND

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, ALBANY, NEW YORK 12223