We announce some new results about multipliers and ideal theory of A-Segal algebras and their relative completions. Complete details are to appear elsewhere [3], [4]. The results about multipliers (Theorem 6) represent work done jointly with Richard R. Goldberg [4].

Definitions. If A is a Banach algebra, we say the subalgebra $B \subseteq A$ is an A-Segal algebra provided B is a dense left ideal of A, B is a Banach algebra with respect to a norm $\| \|$$_B$, the injection of B into A is continuous, and multiplication is (jointly) continuous on $A \times B$ into B. We shall always suppose that A does not have an identity.

The relative completion of B with respect to A, denoted \widehat{B}^A, is defined by

$$\widehat{B}^A = \bigcup_{n>0} S_B(\eta)^A,$$

where $S_B(\eta) = \{ f \in B| \|f\|_B < \eta \}$ and \overline{E}^A is the A closure of E. For $f \in \widehat{B}^A$ we define $\| f \|$ by

$$\| f \| = \inf \{ \delta | f \in S_B(\delta)^A \}.$$

Theorem 1. If B is an A-Segal algebra, then \widehat{B}^A (with norm $\| \|$) is an A-Segal algebra. Furthermore, if B has right approximate units which are bounded in the A-norm, then B is a closed left ideal of \widehat{B}^A and the embedding of B into \widehat{B}^A is isometric if the approximate units have A-norm one.

In case A and B share common right approximate units of A-norm one, then \widehat{B}^A has a rather simple description which permits a straightforward proof of all of the assertions of Theorem 1. Such is the case when $A = L^1(G)$ and B is an ordinary Segal algebra [6, p. 16]. Indeed,

Theorem 2. With A and B as in the preceding paragraph and U denoting (a set of) common right approximate units, we have

\[f \in \widetilde{B}^A \Leftrightarrow M \equiv \text{Sup} \{ \|u \ast f\|_B \mid u \in U\} < \infty, \]
and in this case \(\|f\| = M. \)

From here on we suppose that \(A \) and \(B \) have common right approximate units of \(A \)-norm one. The following theorem, which has the assertion of the second sentence in Theorem 1 as a consequence, is of independent interest.

Theorem 3. \(S_B(\delta) = \overline{S_B(\delta)^A} \cap B; \) in particular, if \(B = \widetilde{B}^A \), then \(S_B(\delta) = \overline{S_B(\delta)^A}. \)

Definition 4. We say \(B \) is singular provided \(B \neq \widetilde{B}^A. \)

Perhaps the simplest example of a singular \(A \)-Segal algebra and its relative completion is the pair \((C(G), L^\infty(G))\), where \(G \) is an infinite compact group and \(A = L^1. \) Additional examples of singular Segal algebras are given in \([3]\) and \([4]\); a more detailed analysis of singularity is given in \([3]\).

Some results which are useful for an analysis of multipliers and the ideal theory of \(A \)-Segal algebras and their relative completions are summarized in

Theorem 5. (1) If \(B \) is a closed ideal in the \(A \)-Segal algebra \(B \), then \(B_1 \subseteq \widetilde{B}^A. \) Let \(U \) denote right approximate units for \(B. \) (2) If \(f \in \widetilde{B}^A \), then \(f \in B \Leftrightarrow \) given any \(\epsilon > 0 \) there exists \(u(\epsilon, f) \equiv u \in U \) so that \(\|uf - f\| < \epsilon. \) (3) \(\widetilde{A}^B \subseteq B \) and, hence, \(\widetilde{B}^A : \widetilde{B}^A \subseteq B. \) We thus see that \(\widetilde{B}^A \) fails to factor if \(B \) is singular.

We now specialize to the case where \(A = L^1(G) \), and \(B = S(G) \) is a symmetric Segal algebra as defined by H. Reiter \([6, \text{p. 17}]\). Here, \(G \) denotes a locally compact nondiscrete group. The (multiplier) algebra of bounded linear operators from \(L^1(G) \) into \(S(G) \) (\(\widehat{S}L^1(G) \)) for which \(T(f \ast g) = f \ast Tg \) is denoted \((L^1, S) ((L^1, \widehat{S}L^1)). \)

Theorem 6. Let \(\{e_\alpha\} \) be a bounded approximate identity for \(L^1(G). \) For a measure \(\mu \in M(G) \) the following three conditions are equivalent:
(1) \(\text{Sup}_\alpha \|e_\alpha \ast \mu\|_S < \infty; \) (2) \(\mu \in (L^1, S); \) (3) \(\mu \in (L^1, \widehat{S}L^1). \)

Furthermore, if \((L^1, S) \subseteq L^1(G) \), then \((L^1, S) \) is isometrically isomorphic with \(\widehat{S}L^1. \)

For our final theorems we require that \(G \) be an infinite compact group. All unexplained notation may be identified from the analogous results in \([5]\).

Theorem 7 \([5, \text{38.9, p. 453}]\). Let \(S(G) \) be a singular Segal algebra. Let
Let F be any subset of Σ. Let F be a closed linear subspace of $\tilde{S}^{L^1}(G)$ for which $F \cap S(G) = S_p(G)$ and $F \subseteq \tilde{S}^{L^1}(G)$. Then F is a closed two-sided ideal in $\tilde{S}^{L^1}(G)$; conversely, all closed two-sided ideals in $\tilde{S}^{L^1}(G)$ have this form. Furthermore, the quotient algebra $\tilde{S}^{L^1}(G)/S(G)$ is a zero algebra. The closed two-sided ideals in $\tilde{S}^{L^1}(G)$ for which the quotient algebra is a zero algebra are exactly the closed linear subspaces of $\tilde{S}^{L^1}(G)$ that contain $S(G)$.

Theorem 8. Suppose $S(G)$ is a singular Segal algebra. For each $\sigma \in \Sigma$, $\tilde{S}^{L^1}_{\{\sigma\}}(G)$ is a regular maximal proper two-sided ideal in $\tilde{S}^{L^1}(G)$. If M is a nonzero bounded linear functional on $\tilde{S}^{L^1}(G)$ which vanishes on $S(G)$, then $M^{-1}(0)$ is a closed maximal proper two-sided ideal in $\tilde{S}^{L^1}(G)$ for which $\tilde{S}^{L^1}_{\{\sigma\}}(G)/M^{-1}(0)$ is a 1-dimensional zero algebra. Every maximal closed proper two-sided ideal of $\tilde{S}^{L^1}(G)$ not of the form $\tilde{S}^{L^1}_{\{\sigma\}}(G)$ is obtained in this way.

For the ideal theory of A-Segal algebras with approximate identities, we refer to [1] and [2].

References

DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 74074