Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the distribution of the zeros of the Riemann zeta function in short intervals
HTML articles powered by AMS MathViewer

by Akio Fujii PDF
Bull. Amer. Math. Soc. 81 (1975), 139-142
References
  • P. D. T. A. Elliott, The Riemann zeta function and coin tossing, J. Reine Angew. Math. 254 (1972), 100–109. MR 313206, DOI 10.1515/crll.1972.254.100
  • H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193. MR 0337821
  • Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 20594
  • Atle Selberg, The zeta-function and the Riemann hypothesis, C. R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 187–200. MR 0019676
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951. MR 0046485
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 10H05, 10H10
  • Retrieve articles in all journals with MSC (1970): 10H05, 10H10
Additional Information
  • Journal: Bull. Amer. Math. Soc. 81 (1975), 139-142
  • MSC (1970): Primary 10H05, 10H10
  • DOI: https://doi.org/10.1090/S0002-9904-1975-13674-3
  • MathSciNet review: 0354575