AN ALGORITHM FOR THE TOPOLOGICAL DEGREE
OF A MAPPING IN n-SPACE1

BY FRANK STENGER

Communicated by Eugene Isaacson, October 3, 19742

1. Introduction. In this paper we announce a new formula for computing the topological degree $d(F, P, \theta)$, where $F = (f^1, \cdots, f^n)$ is a vector of real continuous functions mapping a polyhedron P in \mathbb{R}^n into \mathbb{R}^n, and θ is the zero vector in \mathbb{R}^n.

Let $A = [a_{ij}]$ be an $n \times n$ real matrix, and let A_i denote the ith row of A. We use the convenient notation $\Delta_n(A_1, \cdots, A_n)$ for the determinant of A, and $|A_i| \equiv (a_{i1}^2 + \cdots + a_{in}^2)^{1/2}$ for the Euclidean norm of A_i.

Let X_0, X_1, \cdots, X_q denote $q + 1$ points in \mathbb{R}^n, where $q \leq n$, such that the vectors $X_i - X_0$, $i = 1, 2, \cdots, q$, are linearly independent. A q-simplex with vertices at X_0, \cdots, X_q is defined by

$$S_q(X_0, \cdots, X_q) \equiv \left\{ X \in \mathbb{R}^n : X = \sum_{i=0}^{q} \lambda_i X_i, \lambda_i \geq 0, \sum_{i=0}^{n} \lambda_i = 1 \right\}. $$

We denote by $[X_0 \cdots X_q]$ the oriented q-simplex, defined as in [2]. For example, if $q = n$, then $[X_0 \cdots X_q] = [X_0 \cdots X_n]$ is said to be positively (negatively) oriented in \mathbb{R}^n if $\Delta_{n+1}(Z_0, \cdots, Z_n) > 0 (< 0)$, where $Z_i = (1, X_i)$.

Let P be a connected, n-dimensional closed polyhedron represented as a "sum" of m' positively oriented n-simplexes in the form

$$P = \sum_{j=1}^{m'} [X_0^{(j)} \cdots X_n^{(j)}]$$

such that the intersection of any two of the simplexes has zero n-dimensional volume.

2Key words and phrases. Topological degree, algorithm, nonlinear equations.

1Work supported by U. S. Army Research Grant #DAHC--04--G--017.

2Originally received July 2, 1974.
The boundary of \([X_0 \cdots X_n]\) is represented in terms of oriented \(n-1\)-simplexes by

\[
b[X_0 \cdots X_n] = \sum_{i=0}^{n} (-1)^i [X_0 \cdots \hat{X}_i \cdots X_{i+1} \cdots X_n]
\]

(see [2]). By means of this expansion, the boundary of \(P\) may be represented in the form

\[
b(P) = \sum_{j=1}^{m} t_j [Y_1^{(j)} \cdots Y_n^{(j)}]
\]

where \(P\) is defined in (1.1), and \(t_j = \pm 1\). For example, if \(n = 1\),

\[
P = [X_0 X_1] + [X_1 X_2] + \cdots + [X_{m-1} X_m],
\]

\[
b(P) = [X_m] - [X_0].
\]

Let \(F\) be a vector of \(n\) real \(C^1\) functions defined on \(P\), such that \(F \neq \theta = (0, \cdots, 0)\) on \(b(P)\). We denote by \(d(F, P, \theta)\) the topological degree of \(F\) at \(\theta\) relative to \(P\). We define \(d(F, P, \theta)\) by

\[
d(F, P, \theta) = \frac{1}{2} \left\{ \frac{F(X_m)}{|F(X_m)|} - \frac{F(X_0)}{|F(X_0)|} \right\}
\]

if \(n = 1\),

\[
d(F, P, \theta) = \frac{1}{\Omega_{n-1}} \int_{b(P)} \frac{1}{|F|^n} \Delta_n \left(F, \frac{\partial F}{\partial u_1}, \cdots, \frac{\partial F}{\partial u_{n-1}} \right) du_1 \cdots du_{n-1}
\]

if \(n > 1\),

where \(\Omega_{n-1}\) denotes the \(n-1\) dimensional volume of the surface of the \(n\)-sphere, and where \(F = F(X(U))\) is suitably parametrized as a function of \(U = (u_1, \cdots, u^{n-1})\) (see [1, pp. 465-467]). If \(F\) is merely real and continuous on \(P\), but not necessarily of class \(C^1\), we define \(d(F, P, \theta)\) by

\[
d(F, P, \theta) = \lim_{\nu \to \infty} d(F^{(\nu)}, P, \theta),
\]

where \(F^{(\nu)}\) is real and of class \(C^1\) on \(P\) for \(\nu = 1, 2, \cdots, \max_{X \in P} |F(X) - F^{(\nu)}(X)| \to 0\) as \(\nu \to \infty\), and \(d(F^{(\nu)}, P, \theta)\) is defined by means of (1.4).

The integral formula (1.4) is due to Kronecker [1, pp. 465-467].

Another integral for \(d(F, P, \theta)\) has been given by Heinz [3]. In the following section we shall describe another procedure for evaluating \(d(F, P, \theta)\), which depends only on the sign of the components of \(F\) at a finite number of points of \(b(P)\).
2. Formula for \(d(F, P, \theta) \). If \(a \) is a real number, we define \(\text{sgn} \ a \) by
\[
\text{sgn} \ a = -1, 0 \text{ or } 1 \text{ if } a < 0, = 0 \text{ or } > 0 \text{ respectively.}
\]
We define \(\text{sgn} \ F \) by \(\text{sgn} \ F = (\text{sgn} \ f^1, \cdots, \text{sgn} \ f^n) \). Let us set
\[
(2.1) \quad \delta_m(F, P, \theta) = \frac{1}{2^n n!} \sum_{j=1}^{m} t_j \Delta_n(\text{sgn} F(Y_1^{(j)}), \cdots, \text{sgn} F(Y_n^{(j)}))
\]
where the \(t_j \) and \(Y_i^{(j)} \) are the same as in (1.2). This formula is used to compute \(d(F, P, \theta) \) by means of the following

Algorithm 2.1.

1. Let \(p \) be a fixed positive integer.
2. Set \(\delta = \delta_m(F, P, \theta) \) as defined in (2.1).
3. Revise the definition of \(b(P) \) as follows: For \(j = 1, 2, \cdots, m, \)
 a. locate the longest segment \(Y_k^{(j)}Y_i^{(j)} \) \((k < 1)\) of the oriented simplex \(t_j[Y_i^{(j)} \cdots Y_n^{(j)}] \) in (1.2), and set \(A = (Y_k^{(j)} + Y_i^{(j)})/2; \)
 b. replace \(t_j[Y_i^{(j)} \cdots Y_n^{(j)}] \) according to:
\[
t_j[Y_1^{(j)} \cdots Y_k^{(j)} \cdots Y_i^{(j)} \cdots Y_n^{(j)}] \leftarrow t_j[Y_1^{(j)} \cdots A \cdots Y_i^{(j)} \cdots Y_n^{(j)}],
\]
\[
t_{j+m}[Y_1^{(j+m)} \cdots Y_k^{(j+m)} \cdots Y_i^{(j+m)} \cdots Y_n^{(j+m)}] \leftarrow t_j[Y_1^{(j)} \cdots Y_k^{(j)} \cdots A \cdots Y_n^{(j)}];
\]
4. replace \(m \) by \(2m \) to get a new decomposition of \(b(P) \) in terms of (twice as many) oriented simplexes.
5. Set \(e = \delta_m(F, P, \theta) \) as defined in (2.1), with the new \(b(P) \).
6. If \(\delta = e = \text{integer} \), go to Step 6. Otherwise set \(\delta = e \) and return to Step 3.
7. Replace \(p \) by \(p - 1 \). If the resulting \(p \) is positive, return to Step 3. Otherwise print out \(m, \delta \).

Assumption 2.2. Let \(F \) be continuous and real on \(P \), where \(P \) is defined as in equation (1.1). Let \(b(P) \) be defined as in equation (1.2), and let \(F \neq 0 \) on \(b(P) \). If \(n > 1 \), for all \(1 < \mu \leq n, \phi^1 = f^i_l, j_k \neq j_l \) if \(k \neq l \), and \(\Phi_\mu = (\phi^1, \cdots, \phi^\mu) \), we assume that the sets \(T(A_\mu) = \{ X \in b(P); \Phi_\mu(X)/|\Phi_\mu(X)| = a_\mu \} \cap S_{\mu-1} \) and \(b(P) - T(A_\mu) \) consist of a finite number of connected subsets of \(b(P) \), for all vectors \(a_\mu = (\pm 1, 0, \cdots, 0), (0, \pm 1, 0, \cdots, 0), \cdots, (0, \cdots, 0, \pm 1), \) and for all \(\mu - 1 \)-simplexes \(S_{\mu-1} \) on \(b(P) \).

Theorem 2.3. If Assumption 2.2 is satisfied and if the integer \(p \) in Algorithm 2.2 is chosen sufficiently large, then Algorithm 2.1 prints out
finite integers \(m \) and \(\delta \), where \(\delta = d(F, P, \theta) \), and where \(P \) is defined in (1.1).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112