Let G be a compact Lie group and N, M and $Y \subseteq M$ be smooth G manifolds. Suppose $f : N \rightarrow M$ is a proper G map. We give an obstruction theory (Theorem 1) for a proper G homotopy between f and a map g transverse to Y written $f \cap Y$. In this generality we cannot say more; however, when $f : N \rightarrow M$ is a quasi-equivalence of G vector bundles over Y, this can be considerably improved (Theorem 2) by removing the dependence of the map f. By definition f is a quasi-equivalence if N and M are G vector bundles over Y and f is proper, fiber preserving and degree 1 on fibers. To be concise we suppose G is abelian and omit applications and insights, referring to [1] and [2] for further information.

Let K be a subgroup of G and \hat{K} the set of real irreducible K modules. If Γ and Ω are real K modules, let $V_{\Gamma, \Omega}$ denote the space of surjective real K homomorphisms of Γ to Ω. By Schur’s lemma $V_{\Gamma, \Omega} = \Pi_{\psi \in \hat{K}} V_{\Gamma, \Omega}^{\psi}$ where $V_{\Gamma, \Omega}^{\psi}$ has the homotopy type of the Stiefel manifold of b_{ψ} frames in the D_{ψ} vector space of dimension a_{ψ}. Here D_{ψ} is the division algebra of real K endomorphisms of ψ and $\Gamma = \Sigma_{\psi \in \hat{K}} a_{\psi} \psi$, $\Omega = \Sigma_{\psi \in \hat{K}} b_{\psi} \psi$.

AMS (MOS) subject classifications (1970). Primary 57E15, 57D99.
Let L denote the set of isotropy groups of the action of G on N partially ordered by inclusion. If L has T elements, choose a 1-1 function α from L to the integers 1 through T with the property that $\alpha(K) < \alpha(H)$ if $K > H$.

Suppose f is transverse to Y on $\bigcup_{\alpha(H) < k} N^H = Z_{k-1}$ and $\alpha(K) = k$. Without loss of generality, we may suppose $f^K \cap Y^K$ and define $X^K = (f^K)^{-1} Y^K$ where Y^K is the fixed set of K acting on Y. The G normal bundle of Y in M is denoted by $\nu(Y, M)$. Define $\nu(Y, M)_K$ to be the G complement of $\nu(Y^K, M^K)$ in $\nu(Y, M)|_{Y^K}$. Define a function $V(K)$ from the set of components of X^K to topological spaces whose value at a component C of X^K is $V_{\Gamma, \Omega}$. For p a point in the component C of X^K, $\Gamma = \nu(N^K, N)|_p$ and $\Omega = \nu(Y, M)_K|_p$. Set $X_K = \bigcup_{H > K, H \in L} X^K$.

Theorem 1. There is a sequence of obstructions $O_*(K) \in H^*(X^K/G, X_K/G, \pi^{*-1}(V(K)))$ (in the sense that $O_j(K)$ is defined if $O_i(K) = 0$ for $i < j$) whose vanishing implies f is properly G homotopic rel Z_k to a function transverse to Y on Z_k.

Theorem 2. Let $f': N \to M$ be a quasi-equivalence of G vector bundles over Y. Suppose f is properly G-homotopic to f' and is transverse to Y on Z_{k-1} and $f^K \cap Y^K$. There are obstructions $O'_*(K) \in H^*(Y^K/G, Y_K/G, \pi^{*-1}(V'(K)))$ whose vanishing implies f is properly G homotopic rel Z_k to a function transverse to Y on Z_k. (Here $V'(K)$ is a function of the components of Y^K.)

References

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, HILL CENTER FOR MATHEMATICAL SCIENCES, NEW BRUNSWICK, NEW JERSEY 08903