EXTENSION THEOREMS FOR REDUCTIVE GROUP ACTIONS ON COMPACT KAHLER MANIFOLDS

BY ANDREW J. SOMMESE

Communicated by Stephen S. Shatz, March 13, 1975

Let G be a connected complex reductive Lie group. Noting [3], [7], [8] that G has the structure of a linear algebraic group, let G be any projective manifold in which G is Zariski open and which induces the above algebraic structure on G. The purpose of the present note is to announce

Proposition I. Let G be as above and act holomorphically on a compact Kaehler manifold X. Assume that the Lie algebra of holomorphic vector fields on X generated by G is annihilated by every holomorphic one form. Let $\Phi: Y \to X$ be a holomorphic map where Y is a normal reduced analytic space. Consider the equivariant map $\Phi': G \times Y \to X$; Φ' extends meromorphically (in the sense of Remmert) to $\overline{G} \times Y$.

Remarks. The condition on vector fields annihilated by one forms is automatically satisfied if (cf. [12]—[14]) $H^1(X, \mathcal{O}) = 0$, or G is semisimple, or if every generator of the solvable radical of G has a fixed point, or if G is a linear algebraic group acting algebraically on a projective X. Taking Y to be a point, one gets the orbits of G to be Zariski open in their closures which are analytic sets. A simple corollary is the classical result that there is only one structure of a linear algebraic group on G (cf. [7]), and in fact any reductive connected subgroup of an algebraic group over \mathbb{C} is an algebraic subgroup.

As a further application of the techniques used, a new proof of an improved form of a fixed point theorem (cf. [12], [13], [14]) of the author is given:

Proposition II. Let S be a connected solvable Lie group acting holomorphically on a compact Kaehler manifold X. The following are equivalent:

(a) S has a fixed point on X.

Key words and phrases. Reductive group actions, Kaehler manifolds, linear algebraic groups.

Copyright © 1975, American Mathematical Society
(b) S leaves a compact set in a fibre of the Albanese map invariant.

(c) S has a fixed point within any compact set K on X that S leaves invariant.

(d) The Lie algebra of vector-fields that S generates on X is annihilated by every holomorphic one form on X.

Remark. The assertion (c) where K is any compact set is new; the method of proof allows one to relax the compactness of X and show if, in addition, $H^1(X, O_X) = 0$, then (c) is true.

The following is the fundamental observation on which everything rests.

Lemma. Let X be a compact Kähler manifold and $\rho: C^* \rightarrow \text{Aut}(X)$ a holomorphic C^* action that has at least one fixed point. Let $A: C^* \rightarrow X$ be a holomorphic equivariant map onto an orbit: then A extends to a homomorphic equivariant map \tilde{A} of CP^1 to X.

Proof. Assume without loss of generality that $A(C^*)$ is not a point. Let μ be a Kähler metric on X and ω the associated Kähler form. Assume that μ has been averaged with respect to the circle subgroup $S^1 \subseteq C^*$. Let χ be the holomorphic vector-field on X associated to $\rho: C^* \rightarrow \text{Aut}(X)$.

Because of equivariance, the Jacobian, dA, of A, maps some constant multiple of $z(\partial/\partial z)$ onto the restriction of the vector-field χ to $A(C^*)$. Without loss of generality this constant is assumed to be one.

Let $A^*\mu = a(r) \, dz \otimes d\overline{z}$ where $a(r)$ is positive and depends only on r due to the S^1 averaging of μ. $A^*\omega = (i/2) a(r) \, dz \wedge d\overline{z}$.

$$
\mu(\chi, \chi) = \mu \left(dA \left(z \frac{\partial}{\partial z} \right), dA \left(z \frac{\partial}{\partial z} \right) \right) = A^*\mu \left(z \frac{\partial}{\partial z}, z \frac{\partial}{\partial z} \right)
$$

$$
= a(r)|z|^2 \leq M < \infty
$$

where $\sup_X \mu(\chi, \chi) = M < \infty$.

Now by Lichnerowicz [5] there exists a C^∞ function ϕ on X such that $\overline{\partial}\phi = \omega(\chi)$. Pulling back and, without confusion, letting ϕ stand for $A^*\phi = \phi(A(z))$, one has

$$
i \frac{1}{2} z a(r) \, d\overline{z} = \frac{\partial \phi}{\partial z} \, d\overline{z} \quad \text{or} \quad i \frac{1}{2} \overline{z} a(r) = \frac{\partial \phi}{\partial \overline{z}}.
$$

Now fix one circle, say the unit circle $C_1 \subseteq C^*$ and let $C_R = \{ z \in C^* | |z| = R \}$. Assume $R > 1$; C_1 and C_R bound an annulus \tilde{A} with $\partial \tilde{A} = C_R - C_1$. Now
\[
\int_A \int_A A^* \mu = \int_A \int_A \frac{i}{z} a(r) \, dz \wedge d\bar{z} = -\int_A \int_A \frac{\partial \phi}{\partial z} \frac{d\bar{z}}{z} \wedge dz
\]

\[
= -\int_{C_R} \phi \frac{dz}{z} + \int_{C_1} \phi \frac{dz}{z} = \frac{1}{i} \int_0^{2\pi} \phi(Re^{i\theta}) \, d\theta - C
\]

with \(C \) a constant. Now \(\int_0^{2\pi} \phi(Re^{i\theta}) \, d\theta \leq M' < \infty \) since \(\phi \) is the pullback of a bounded function on \(X \).

Therefore \(\int_A A^* \mu \leq M'' < \infty \) where \(M'' \) is a positive constant independent of \(R \). Thus by Bishop's extension theorem (cf. [1], [2]), \(A \) extends holomorphically over \(\infty \). An identical argument gives extension at \(0 \). Q.E.D.

Using the above Lemma and the Levi-Griffiths-Shiffman-Siu extension theorem (cf. [2], [9], [10], [11]) repeatedly, one proves the result for \(\text{SL}(2, \mathbb{C}) \) and groups of the form \((\mathbb{C}^*)^n \) that have a fixed point on \(X \). Then one proves it for one parameter unipotent subgroup of \(G \) by using the above \(\text{SL}(2, \mathbb{C}) \) result on an \(\text{SL}(2, \mathbb{C}) \) in \(G \) containing the subgroup; this can be done by Jacobson-Morosow (cf. [4]). One now proves it for a Borel subgroup of \(G \) and uses an argument depending on the fact that one has a locally trivial fibering of \(G \) over \(G/B \) which is compact.

In the very interesting paper [6] of Lieberman, related matters are discussed.

BIBLIOGRAPHY

