ON CUSPIDAL REPRESENTATIONS OF
p-ADIC REDUCTIVE GROUPS

BY PAUL GERARDIN

Communicated by Robert Fossum, February 12, 1975

Abstract. Let k be a p-adic field, and G a reductive connected algebraic group over k. Fix a maximal torus T of G which splits in an unramified extension of k, and which has the same split rank as the center of G. For each character θ of $T(k)$, satisfying some conditions, there is a cuspidal representation γ_θ of $G(k)$ which is a sum of a finite number of irreducible representations; the correspondence $\theta \mapsto \gamma_\theta$ is one-to-one on the orbits of such characters by the little Weyl group of T; furthermore, the formulas for the formal degree of γ_θ and its character for sufficiently regular elements of $T(k)$ are given: they are formally the same as is the discrete series for real reductive groups.

1. Unramified maximal tori. Let k be a p-adic field, that is a finite extension of \mathbb{Q}_p or a field of formal series over a finite extension of \mathbb{F}_p. We denote by \overline{k} the residue field of order q.

Let G be a reductive connected algebraic group defined over k, the derived group G_{der} of which is simply connected. A maximal torus of G defined over k is called minisotropic if it normalizes no (proper) horocyclic subgroup of G defined over k.

Lemma. Suppose there exists a minisotropic maximal torus T of G which splits in a finite unramified extension L of G. Then the Galois group Γ of L over k has a unique fixed point v in the apartment of T in the building of $G_{\text{der}}(L)$ [2]; moreover, the face of v is minimal amongst the faces in this apartment which are invariant by Γ.

2. Characters. We conserve notations and hypotheses of §1 and the Lemma. Let θ be a continuous character of $T(k)$. For each $\lambda \in \mathcal{X}^c(T)$, the lattice of rational one-parameter subgroups of T, we define a character θ_λ of L^x by

Key words and phrases. Reductive p-adic groups, cuspidal representations.

1Supported in part by National Science Foundation grant MPS72-05055A02.
\[\theta_{\lambda}(z) = \theta\left(\prod_{\Gamma}(z^\lambda) \right), \quad z \in L^x. \]

Definition 1. The character \(\theta \) is called regular if, for every root \(\alpha \) of \((G, T)\), the character \(\theta_{\alpha^\vee} \) of \(L^x \) associated to the coroot \(\alpha^\vee \) is nontrivial.

For each root \(\alpha \), we denote by \(|\alpha|_\theta \) the conductor of \(\theta_{\alpha^\vee} \) and let \(R_f \) be the set of roots of \((G, T)\) such that \(|\alpha|_\theta \leq f \).

Definition 2. The character \(\theta \) is called good if it is regular and if, for every \(f \), the set \(R_f \) is a convex set of roots.

We need the following form of Macdonald's conjecture (cf. [1, C-6.7]):

Let \(\overline{S} \) be a reductive connected algebraic group over \(\overline{k} \), \(\overline{T} \) a minisotropic maximal torus of \(\overline{S} \); fix a finite extension \(\overline{L} \) of \(\overline{k} \) which splits \(\overline{T} \); let \(\Gamma \) be its Galois group. A character \(\overline{\theta} \) of \(\overline{T}(\overline{k}) \) is called regular if, for every root \(\alpha \) of \((\overline{S}, \overline{T})\), the character \(z \mapsto \overline{\theta}(\prod_{\Gamma}(z^\alpha)) \) of \(L^x \) is nontrivial; if \(\overline{\theta} \) is a regular character of \(\overline{T}(\overline{k}) \), then there exists a unique class \(\overline{\sigma}_\theta \) of representations of \(\overline{S}(\overline{k}) \) such that, if \(\text{St}_S \) denotes the Steinberg representation of \(\overline{S}(\overline{k}) \), \(\text{St}_S \otimes \overline{\sigma}_\theta \) is the induced representation \(\text{Ind}(\overline{S}(\overline{k}), \overline{T}(\overline{k}), \overline{\theta}) \). Moreover \(\overline{\sigma}_\theta \) is cuspidal, and the intertwining number of two such representations \(\overline{\sigma}_{\theta_1} \) and \(\overline{\sigma}_{\theta_2} \) is equal to the number of elements in the little Weyl group of \(\overline{T} \) in \(\overline{G}(\overline{k}) \) which send \(\overline{\theta}_1 \) on \(\overline{\theta}_2 \).

3. Cuspidal representations.

Theorem. Let \(G \) be a reductive connected algebraic group over the \(p \)-adic field \(k \), the derived group \(G_{\text{der}} \) of which is simply connected. Let \(T \) be a minisotropic maximal torus which splits in an unramified extension of \(k \). Fix a good character \(\theta \) of \(T(k) \). Assume Macdonald's conjecture and one of the following conditions:

(i) \(|\alpha|_\theta > 1 \) for every root \(\alpha \) of \((G(L), T(L))\)

(ii) the residual characteristic of \(k \) is not 2 and there exists a rational representation \(\rho \) of \(G_{\text{der}} \) such that the corresponding bilinear form \(\text{Tr} \rho(X)\rho(Y) \) on the Lie algebra \(\text{Lie} \overline{T}_{\text{der}}(\overline{k}) \) is nondegenerate.

Then there exists a class \(\gamma_{\theta} \) of representations of \(G(k) \) such that:

(a) \(\gamma_{\theta} \) is a finite sum of irreducible representations of \(G(k) \), the coefficients of which have compact support modulo the center;

(b) the intertwining number of two such representations \(\gamma_{\theta_1} \) and \(\gamma_{\theta_2} \) is the number of elements in the little Weyl group \(W(T) \) of \(T \) in \(G(k) \) which send \(\theta_1 \) on \(\theta_2 \);
(c) there exists a Haar measure on $G(k)$, independent of θ, such that the formal degree of γ_θ is

$$d(\theta) = \left(\prod_R q^{|\alpha|_\theta - 1} \right)^{1/2}$$

where R is the set of roots of (G, T);

(d) for $t \in T(k)$ such that $\text{val}(t^\alpha - 1) \geq |\alpha|_\theta / 3$ for every $\alpha \in R$, the value on t of the character of γ_θ is given by

$$\text{Tr} \, \gamma_\theta(t) = (-1)^{l(G)}(-1)^{\Sigma_R / \Gamma (|\alpha|_\theta - 1)} \sum_{\Delta W(T)} \theta(wt)$$

where $l(G)$ is the split semisimple rank of G, Δ is the $W(T)$-invariant function on the regular elements of $T(k)$ given by

$$\Delta(t) = (-1)^{\Sigma_R / \Gamma \text{val}(t^\alpha - 1)} |\text{Det}_{\text{Lie} G / \text{Lie} T}(\text{Ad} \, t - 1)|^{1/2},$$

and Γ is the Galois group over \overline{k} of an unramified extension which splits T.

4. Remarks. 1. The proof is based upon an explicit construction of γ_θ (assuming Macdonald’s conjecture), obtained by inducing a finite dimensional representation of a compact open subgroup of $G(k)$ naturally associated to T and θ; the essential tool is given by Weil’s paper about Heisenberg groups [5]; we used too an argument given by R. Howe [4].

2. In the case where $|\alpha|_\theta$ is constant and strictly greater than 1, and if the point v of the lemma is special, the proofs are given in [3].

3. G. Lusztig has just proved Macdonald’s conjecture.

REFERENCES

4. R. Howe, Tamely ramified supercuspidal representations of GL_n (preprint).

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540