Counting the faces of cut-up spaces
HTML articles powered by AMS MathViewer
- by Thomas Zaslavsky PDF
- Bull. Amer. Math. Soc. 81 (1975), 916-918
References
- Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 0226496
- Branko Grünbaum, Arrangements and spreads, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 10, American Mathematical Society, Providence, R.I., 1972. MR 0307027, DOI 10.1090/cbms/010
- Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). MR 174487, DOI 10.1007/BF00531932
- Gian-Carlo Rota, On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (Presented to Richard Rado), Academic Press, London, 1971, pp. 221–233. MR 0282892
- Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102. MR 357135, DOI 10.1090/memo/0154
- Thomas Zaslavsky, A combinatorial analysis of topological dissections, Advances in Math. 25 (1977), no. 3, 267–285. MR 446994, DOI 10.1016/0001-8708(77)90076-7
Additional Information
- Journal: Bull. Amer. Math. Soc. 81 (1975), 916-918
- MSC (1970): Primary 05A15, 50B30; Secondary 06A35, 52A25, 57A65, 57C05
- DOI: https://doi.org/10.1090/S0002-9904-1975-13885-7
- MathSciNet review: 0400066