ON THE CLASSIFICATION OF TAUT SUBMANIFOLDS

BY MICHAEL FREEDMAN

Communicated by Samuel Eilenberg, April 28, 1975

All terminology will be smooth. A submanifold \(K^{2n} \subset M^{2n+2} \) is taut if \(\pi_i(U, \partial U) = 0 \) for \(i \leq n \), where \(U = (M\text{-neighborhood } K) \). Examples are: nonsingular algebraic hypersurfaces in \(CP^n \) (this follows from the Lefschetz theorem on hyperplane sections), simple knots (see [L]), the spines (see [M]). Every codimension-2 homology class contains taut representatives (see [K-M]), and the set of taut submanifolds is closed under connected sum (of pairs) with \((S^n \times S^n \cong_{\text{standard}} S^{2n+2}) \). Taut submanifolds are "almost canonical" in the sense of [Q], and from this viewpoint it is readily seen that if \(n \geq 3 \), every \(K^{2n} \subset M^{2n+2} \) with \(i \)-connected is concordant to \(K^{2n} \subset M^{2n+2} \) taut.

If \(M^{2n+2} \) is simply connected, the homology groups of \(K^{2n} \), taut, are completely determined by the homology of \(M^{2n+2} \) except for \(B_n(K^{2n}) \). A lower bound on \(B_n(K) \) in terms of \(i_*[K^{2n}] \) and the cohomology ring of \(M^{2n+2} \) has been obtained in [T-W]. In [F1] we have proven Theorem 1, which provides a partial converse to Theorem 2.2 of [T-W] for \(M = CP^{n+1} \), \(n \geq 2 \) odd, and \(i_*[K] \) a prime, \(p \), multiple of the generator of \(H_{2n}(CP^{n+1}; Z) \). Interestingly, if \(p > 3 \), the nonsingular algebraic hypersurfaces \(V \) are not the simplest taut submanifolds in their homology class, but may be decomposed as \(V = K \# l\text{-copies } S^n \times S^n, l > 0 \), for some taut submanifold \(K \).

We do not know if this is true for \(n = 1 \). If it were, there would be surfaces imbedded in \(CP^2 \) with genus smaller than that of the nonsingular algebraic hypersurfaces to which they are homologous. This would contradict Thom’s conjecture.

Statement of Theorem 1. Let \(M^{2n+2} \) be a simply-connected, oriented, smooth \((2n + 2)\)-manifold, \(n \) odd \(> 1 \). Let \(x \in H^2(M^{2n+2}; Z) \) generate a free summand of \(H^2(M^{2n+2}; Z) \). Let \(p \) be any prime. Set

\[s_{\text{even}} = \max \{ 4, (cosh(p - 2k)x)(sech(px))(L(M))[M] | 0 < k < p \}, \]

\[s_{\text{odd}} = \max \{ 3, (cosh(p - 2k)x)(sech(px))(L(M))[M] | 0 < k < p \}, \]

where \(L \) is the Hirzebruch polynomial.

For all integers \(h \geq 0 \), there exists a taut submanifold \(K_h \subset M \) with

\[M \cap px = i_*[K_h], \]

\(\text{AMS (MOS) subject classifications (1970). Primary 57D95; Secondary 57D65.} \)
and
\[B_n(K_h) = \bar{\tau}_{\text{even}} + 6T_n(M) - 2B_n(M) + B_{n+1}(M) + 2h, \]
if \(B_{n+1}(M) \) is even.
\[= \bar{\tau}_{\text{odd}} + 6T_n(M) - 2B_n(M) + B_{n+1}(M) + 2h, \]
if \(B_{n+1}(M) \) is odd,

\[B_n(M) = \text{rank } H_n(M; Z)/\text{Torsion}, \]
\[T_n(M) = \text{rank } H_n(M) = \text{rank } H_n(M; Z). \]

We now state two theorems, proved in [F2], which indicate to what extent the diffeomorphism class of a taut submanifold is fixed by \(B_n(K) \).

Theorem 2. If \(M^{2n+2} \) is a compact, simply connected, smooth \((2n+2)\)-manifold, \(n \) odd \(\geq 3 \), and \(K_0 \xleftarrow{i_0} M^{2n+2} \) and \(K_1 \xrightarrow{i_1} M^{2n+2} \) are \(n \)-connected inclusions of closed submanifolds with \((i_0)_*[K_0] = (i_1)_*[K_1] \in H_2n(M^{2n+2}; Z)\), then if \(B_n(K_0) = B_n(K_1) \), \(K_0 \) is diffeomorphic to \(K_1 \).

Theorem 3. Assume \(M^{2n+2} \) is a simply-connected smooth \((2n+2)\)-manifold, \(n \) even, \(\geq 2 \), with \(H_n(M; Z) = 0 \). If \(i_0 \) and \(i_1 \) are as above, then if the intersection pairings on \(H_n(K_0; Z)/\text{Torsion} \) and \(H_n(K_1; Z)/\text{Torsion} \) are isometric, \(K_0 \) is diffeomorphic to \(K_1 \).

If \(M^{2n+2} \), \(n \) odd, \(\geq 3 \), is simply-connected, it follows from Theorem 2 that there is a simplest taut submanifold representing \(i_*[K] \), \(K_0 \), and every other is of the form \(K_l = K_0 \#_l \text{copies } S^n \times S^n \). This, together with a previous remark, yields a complete classification of taut submanifolds in a homotopy \(CP^{n+1} \), \(n \) odd, \(\geq 1 \), representing a prime multiple of the generator of \(H_2n(CP^{n+1}; Z) \).

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720