Let G denote the complex symplectic group which may be defined by the equation
\[G = \left\{ g \in \text{GL}(2k, \mathbb{C}) : gs_kg^t = s_k, \ s_k = \begin{bmatrix} 0 & -I_k \\ I_k & 0 \end{bmatrix} \right\}. \]

In this paper we shall give a simple and concrete realization of a set of representatives of all irreducible holomorphic representations of G. This realization, which involves the G-module structure of a symmetric algebra of polynomial functions is inspired by the work of B. Kostant [1] and follows the general scheme formulated in [2]. Detailed proofs will appear elsewhere.

1. The symmetric algebra $S(E^*)$. Set $E = \mathbb{C}^n \times 2k$ with $k \geq n \geq 2$; then G acts linearly on E by right multiplication. Let (\cdot, \cdot) denote the skew-symmetric bilinear form on E given by
\[(X, Y) = \text{trace}(Xs_k Y^t), \quad \forall X, Y \in E. \]

If $X \in E$, let X^* denote the linear form $Y \mapsto (X, Y)$ on E. The map $X \mapsto X^*$ establishes an isomorphism between E and its dual E^*. Let $S(E^*)$ denote the symmetric algebra of all complex-valued polynomial functions on E. The action of G on E induces a representation R of G on $S(E^*)$ defined by
\[(R(g)p)(X) = p(Xg), \quad \forall p \in S(E^*), \quad \forall X \in E. \]

If $X \in E$, define a differential operator $X^*(D)$ on $S(E^*)$ by setting
\[(X^*(D)f)(Y) = \{(d/dt)f(Y + tX)\}_{t=0}, \]
for all $f \in S(E^*), t \in \mathbb{R},$ and $X, Y \in E$.

Define $(X_1^* \cdots X_n^*)(D)f = X_1^*(D)((X_2^* \cdots X_n^*)(D)f)$ inductively on n. If
\[[X_1^* \cdots X_l^*(D)] Y_1^* \cdots Y_m^* \]

\[
= \begin{cases}
0, & \text{if } m < l, \\
\frac{(-1)^l}{(m-l)!} \sum_{\sigma \in S_m} X_1^*(Y_{\sigma(1)}) \cdots X_l^*(Y_{\sigma(l)}) Y_{\sigma(l+1)} \cdots Y_{\sigma(m)}, & \text{if } m \geq l.
\end{cases}
\]

It follows from the above equation and by linearity that the map \(X^* \rightarrow X^*(D) \) extends to an isomorphism \(p \rightarrow p(D) \) between \(S(E^*) \) and the symmetric algebra \(S(E) \) of differential operators on \(E \).

A polynomial \(f \in S(E^*) \) will be called \(G \)-invariant if \(R(g)f = f \), \(\forall g \in G \). A differential operator \(p(D) \in S(E) \) will be called \(G \)-invariant if \(R(g)(p(D)f) = p(D)(R(g)f) \), for all \(g \in G, f \in S(E^*) \). It is then shown that \(p \in S(E^*) \) is \(G \)-invariant if and only if \(p(D) \) is \(G \)-invariant.

Let \(J(E^*) \) (resp. \(J(E) \)) denote the subalgebra of \(S(E^*) \) (resp. of \(S(E) \)) consisting of all \(G \)-invariant polynomials (resp. of all \(G \)-invariant differential operators). Let \(J^+(E^*) \) denote the set of all \(G \)-invariant polynomials without constant terms; \(J^+(E) \) is then defined in a similar fashion.

A polynomial \(f \in S(E^*) \) is said to be \(G \)-harmonic if \(p(D)f = 0 \) for all \(p \in J^+(E^*) \). Let \(H(E^*) \) denote the subspace of \(S(E^*) \) consisting of all \(G \)-harmonic polynomials. Let \(J^+(E^*)S(E^*) \) be the ideal in \(S(E^*) \) generated by \(J^+(E^*) \), and denote by \(V \) the algebraic variety in \(E \) of common zeros of polynomials in the ideal \(J^+(E^*)S(E^*) \). It follows from the theory of polynomial invariants (cf. [3, Chapter VI]) that \(J(E^*) \) is generated by the constant function 1 and \(n(n-1)/2 \) polynomials \(p_{ij} \) defined by

\[
p_{ij}(X) = \sum_{k=1}^{k} (X_{i+k}X_{j+k}^* - X_{i}X_{j+k}^*), \quad 1 \leq i < j \leq n; X = (X_{rs}) \in E.
\]

Moreover, we have \(V = \{ X \in E; Xs \cdot X^t = 0 \} \) and that \(H(E^*) = \{ f \in S(E^*); p_{ij}(D)f = 0, \forall i, j, 1 \leq i < j \leq n \} \). It is then shown that the ideal \(J^+(E^*)S(E^*) \) is prime.

Theorem 1.1. The space \(S(E^*) \) is decomposed into a direct sum as \(S(E^*) = J^+(E^*)S(E^*) \oplus H(E^*) \). Moreover, \(S(E^*) = J(E^*) \oplus H(E^*) \) and \(H(E^*) \) is spanned by all polynomials \((X^*)^m, m = 1, 2, \ldots \), for all \(X \in V \).

Corollary 1.2. If \(S(V) \) denotes the ring of functions on \(V \) obtained by restricting elements of \(S(E^*) \) to \(V \), then the restriction mapping \(f \rightarrow f/V \) (\(f \in H(E^*) \)) is a \(G \)-module isomorphism of \(H(E^*) \) onto \(S(V) \).

2. The irreducible holomorphic representations of \(G \). Let \(B \) denote the lower triangular subgroup of \(\text{GL}(n, \mathbb{C}) \) and define a holomorphic character \(\xi = \)
where the m_i's $(1 \leq i \leq n)$ are integers satisfying $m_1 \geq m_2 \geq \cdots \geq m_n \geq 0$. A polynomial $f \in S(E^*)$ will be called ξ-covariant if $f(bX) = \xi(b)f(X)$, $\forall (b, X) \in B \times E$. Let $H(E, \xi)$ denote the subspace of $H(E^*)$ consisting of all ξ-covariant G-harmonic polynomials.

Theorem 2.1. If $R(\cdot, \xi)$ denotes the representation of G which is obtained by right translation on $H(E, \xi)$ then $R(\cdot, \xi)$ is irreducible and its highest weight is indexed by $(m_1, m_2, \ldots, m_n, 0, \ldots, 0)$ (k factors).

Proof. Let

$$C = \left\{ \begin{bmatrix} c & 0 \\ 0 & c^{-1} \end{bmatrix} \in \text{GL}(2k, \mathbb{C}) : c \text{ diagonal } k \times k \text{ matrix} \right\}$$

and

$$U = \left\{ \begin{bmatrix} u_1 & 0 \\ u_2 & u_1 \end{bmatrix} : u_1^r = (u_1^t)^{-1}, u_1^ru_2^t - u_2u_1^{-1} = 0, \text{ } u_1 \text{ lower triangular unipotent} \right\} ;$$

then CU is a Borel subgroup of G. Define a holomorphic character ξ on CU by setting

$$\xi(cu) = c_m^{m_1} \cdots c_n^{m_n}, \forall cu \in CU.$$

Let $\text{Hol}(G, \xi)$ denote the space of all ξ-covariant holomorphic functions on G. Then by the Borel-Weil-Bott theorem the representation $\pi(\cdot, \xi)$ of G which is obtained by right translation on $\text{Hol}(G, \xi)$ is irreducible (see also [4, Chapter XVI]). Let $I = [I_n \ 0] \in E$, then $\text{Orb}(I) = \{ Ig : g \in G \}$ is a dense subset of V. Define a map Φ from $H(E, \xi)$ into $\text{Hol}(G, \xi)$ by the equation $(\Phi f)(g) = f(ig)$, $\forall f \in H(E, \xi), \forall g \in G$. Then it follows from Corollary 1.2 that Φ is a G-module isomorphism. \(\square\)

When $k = n$, the following theorem is an immediate consequence of Theorem 2.1.

Theorem 2.2. Suppose that

$$E = \mathbb{C}^{k \times 2k} \ (k \geq 2) \text{ and } \xi = \xi(m_1, m_2, \ldots, m_k);$$

then the representations $R(\cdot, \xi)$ of G on the various spaces $H(E, \xi)$ realize up to equivalence all irreducible holomorphic representations of G when the m_i's $(1 \leq i \leq k)$ are allowed to take all integral values subject to the condition $m_1 \geq m_2 \geq \cdots \geq m_k \geq 0$. Moreover, to each representation $R(\cdot, \xi)$ corresponds a highest weight vector $f_\xi \in S(E^*)$ defined by the equation...
\[f_k(X) = \Delta_{1}^{m-1} \Delta_{2}^{m-2} \Delta_{3}^{m-3} \cdots \Delta_{k-1}^{m-k} \Delta_{k}^{m} (X), \quad \forall X \in E \]

where the \(\Delta_i(X) \) \((1 \leq i \leq k)\) are the principal minors of \(X \).

REFERENCES

DEPARTMENT OF MATHEMATICS, HARVARSD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138