THE STRUCTURE OF SINGULARITIES IN AREA-RELATED VARIATIONAL PROBLEMS WITH CONSTRAINTS

BY JEAN E. TAYLOR

Communicated by S. S. Chern, July 3, 1975

This is a research announcement of results whose full details and proofs have been submitted for publication elsewhere. We provide a complete description, both combinatorial and differential, of the local structure of singularities in a large class of two-dimensional surfaces in \mathbb{R}^3, those which are (M, e, δ) minimal [TJ1] and those which are (F, e, δ) minimal for a Hölder continuous ellipsoidal integrand F [TJ2]. Such surfaces include mathematical models for compound soap bubbles [AF1], [AF2] and soap films, thereby settling a problem which has been studied for well over a century (a very general formulation of Plateau's Problem); in general, (M, e, δ) and (F, e, δ) minimal surfaces arise as solutions to geometric variational problems with constraints.

(M, e, δ) and (F, e, δ) minimal surfaces were defined, shown to exist, and proven to be regular almost everywhere in [AF2] (see [AF1] for a brief description). We define $Y \subset \mathbb{R}^3$ as the union of the half disk $\{x \in \mathbb{R}^3: x_1^2 + x_2^2 < 1, x_3 \geq 0, x_3 = 0\}$ with its rotations by 120° and 240° about the x_1 axis, and define $T \subset \mathbb{R}^3$ as $C \cap \{x: |x| < 1\}$, where C is the central cone over the one-skeleton of the regular tetrahedron centered at the origin and containing as vertices the points $(3, 0, 0)$ and $(-1, 2\sqrt{2}, 0)$. Varifold tangents are defined in [AW 3.4] and a tangent cone is defined to be the support of a varifold tangent.

The major result of [TJ1] is the following.

Theorem. Suppose S is (M, e, δ) minimal with respect to some closed set B, where $e(r) = Cr^\alpha$ for some $C < \infty$ and $\alpha > 0$. Then

1. there exists a unique tangent cone, denoted $\text{Tan}(S, p)$, to S at each point p in S,
2. $R(S) = \{p \in S: \text{Tan}(S, p) \text{ is a disk}\}$ is a two-dimensional Hölder continuously differentiable submanifold of \mathbb{R}^3, with $H^2(R(S)) = H^2(S)$ [AF1], [AF2] (here H^2 denotes (Hausdorff) two-dimensional area),
3. $\sigma_Y(S) = \{p \in S: \text{Tan}(S, p) = \theta Y \text{ for some } \theta \text{ in } O(3), \text{ the group of}

This research was supported in part by National Science Foundation grants GP 42451 and MPS 72-05055 A02.
orthogonal rotations of \(R^3 \) is a one-dimensional Hölder continuously differentiable submanifold of \(R^3 \), and for each \(p \) in \(\sigma_Y(S) \) there exists a neighborhood \(N \) of \(p \) and a Hölder continuously differentiable diffeomorphism \(f: R^3 \rightarrow R^3 \) such that \(f(S \cap N) = Y \),

\[
\sigma_Y(S) = \{ p \in S: \operatorname{Tan}(S, p) = \theta T \text{ for some } \theta \text{ in } O(3) \} \text{ consists of isolated points, and for each } p \text{ in } \sigma_Y(S) \text{ there is a neighborhood } N \text{ of } p \text{ and a Hölder continuously differentiable diffeomorphism } f: R^3 \rightarrow R^3 \text{ such that } f(S \cap N) = T,
\]

\[
S = R(S) \cup \sigma_Y(T) \cup \sigma_Y(S).
\]

The proof uses the methods of geometric measure theory, in particular those developed in [AF2] and [TJ3], and can be divided into three broad regions: a tangent cone analysis, the proof of an “epiperimetric inequality” similar to those of [R] and [TJ3] but in derivative form, and the derivation of the differential structure from this inequality. Contained in the first region is a proof that the only two-dimensional area minimizing cones in \(R^3 \) are (up to rotations) the disk \(Y \) and \(T \); Lamarle [L] in 1864 attempted to do this, but his analysis was partly in error.

Recall that an integrand is a continuous function \(F: R^3 \times G(3, 2) \rightarrow R^+ \), where \(G(3, 2) \) denotes the Grassmannian of unoriented two-plane directions in \(R^3 \), and that at each point \(p \) in \(R^3 \) there is associated to \(F \) the constant coefficient integrand \(F^p: G(3, 2) \rightarrow R^+ \) given by \(F^p(\pi) = F(p, \pi) \) for every \(\pi \) in \(G(3, 2) \) [AF2]. \(F^p \) may be regarded as a function on the unit ball in \(\bigwedge^2 R^3 \), the space of 2-vectors of \(R^3 \), by defining \(F^p(v) = F^p(\pi) \), where \(v \) is any 2-vector of length 1 and \(\pi \) is the unoriented two-plane naturally associated to \(v \) [Fl, 6.1].

We define \(F \) to be ellipsoidal if for each \(p \) in \(R^3 \) the positively homogeneous function of degree one on \(\bigwedge^2 R^3 \) which extends \(F^p \) is a norm induced by an inner product on \(\bigwedge^2 R^3 \). Equivalently, for every \(p \) in \(R^3 \) there exists a nonsingular linear map \(L_p: R^3 \rightarrow R^3 \) such that \(F^p(v) = |\bigwedge^2 L_p(\nu)| \) for every 2-vector \(v \) of length 1; thus for every \((H^2, 2) \)-rectifiable set \(S \), \(F^p(S) = H^2(L_p(S)) \).

The major result of [TJ2] is then that if \(S \) is \((F, \epsilon, \delta)\) minimal with respect to some closed set \(B \) for a Hölder continuous ellipsoidal integrand \(F \) (and \(\epsilon(r) = Cr^\alpha \) for some \(C < \infty \) and \(\alpha > 0 \)), the conclusions of the above theorem hold, except that “\(\theta Y \)” is replaced by “\(L_p^{-1}(\theta Y) \)” and “\(\theta T \)” by “\(L_p^{-1}(\theta T) \)”. This implies in particular that area minimizing surfaces (more generally, \((M, \epsilon, \delta)\) minimal surfaces) on three-dimensional Hölder continuously differentiable manifolds have the structure described in the theorem; such a result could be derived directly from [TJ1] only if the manifold were at least \(C^2 \).

A converse of these results is easy to prove, i.e., if a compact surface has the structure of (1)–(5) of the theorem [respectively, has that structure up to a linear map at each point], then the surface is \((M, \epsilon, \delta)\) minimal [respectively, \((F, \epsilon, \delta)\) minimal for some Hölder continuous ellipsoidal integrand \(F \)] for some \(\delta > 0 \) and \(\epsilon(r) = Cr^\alpha \), some \(C < \infty \) and \(\alpha > 0 \).
REFERENCES

[TJ2] ———, The structure of singularities in solutions to quadratic variational problems with constraints in \(\mathbb{R}^3 \) (preprint).

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903