The structure of singularities in area-related variational problems with constraints
HTML articles powered by AMS MathViewer
- by Jean E. Taylor PDF
- Bull. Amer. Math. Soc. 81 (1975), 1093-1095
References
- F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Bull. Amer. Math. Soc. 81 (1975), 151–154. MR 361996, DOI 10.1090/S0002-9904-1975-13681-0
- F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199. MR 420406, DOI 10.1090/memo/0165
- William K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417–491. MR 307015, DOI 10.2307/1970868
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325 [L] Ernest Lamarle, Sur la stabilité des systemes liquides en lames minces, Mém. Acad. Roy. Belg. 35 (1864).
- E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 1–14. MR 171197, DOI 10.2307/1970488
- Jean E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), no. 3, 489–539. MR 428181, DOI 10.2307/1970949 [TJ2] Jean E. Taylor, The structure of singularities in solutions to quadratic variational problems with constraints in R3 (preprint).
- Jean E. Taylor, Regularity of the singular sets of two-dimensional area-minimizing flat chains modulo $3$ in $R^{3}$, Invent. Math. 22 (1973), 119–159. MR 333903, DOI 10.1007/BF01392299
Additional Information
- Journal: Bull. Amer. Math. Soc. 81 (1975), 1093-1095
- MSC (1970): Primary 49F22, 49F20, 53A10; Secondary 53C65, 82A50
- DOI: https://doi.org/10.1090/S0002-9904-1975-13930-9
- MathSciNet review: 0388223