Operator algebras and algebraic $K$-theory
Author:
Lawrence G. Brown
Journal:
Bull. Amer. Math. Soc. 81 (1975), 1119-1121
MSC (1970):
Primary 46L05
DOI:
https://doi.org/10.1090/S0002-9904-1975-13943-7
MathSciNet review:
0383090
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Lawrence G. Brown, The determinant invariant for operators with trace class self commutators, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin, 1973, pp. 210β228. Lecture Notes in Math., Vol. 345. MR 0390830 2. L. G. Brown, Group cohomology of topological groups (in preparation).
- Lawrence G. Brown, Characterizing ${\rm Ext}(X)$, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Springer, Berlin, 1977, pp. 10β18. Lecture Notes in Math., Vol. 575. MR 0474275
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^{\ast } $-algebras, operators with compact self-commutators, and $K$-homology, Bull. Amer. Math. Soc. 79 (1973), 973β978. MR 346540, DOI https://doi.org/10.1090/S0002-9904-1973-13284-7
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast } $-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin, 1973, pp. 58β128. Lecture Notes in Math., Vol. 345. MR 0380478 6. R. K. Dennis, Differentials in algebraic K-theory(preprint).
- J. William Helton and Roger E. Howe, Integral operators: commutators, traces, index and homology, Proceedings of a Conference Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin, 1973, pp. 141β209. Lecture Notes in Math., Vol. 345. MR 0390829
- Jerome Kaminker and Claude Schochet, Steenrod homology and operator algebras, Bull. Amer. Math. Soc. 81 (1975), no. 2, 431β434. MR 450997, DOI https://doi.org/10.1090/S0002-9904-1975-13775-X 9. J. W. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies, no. 72, Princeton, N. J., 1971. 10. J. W. Milnor, On the Steenrod homology theory, Mimeographed notes, Univ. of Calif, Berkeley, Calif., 1961.
- N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. (2) 41 (1940), 833β851. MR 2544, DOI https://doi.org/10.2307/1968863
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 46L05
Retrieve articles in all journals with MSC (1970): 46L05