OPERATOR ALGEBRAS AND ALGEBRAIC K-THEORY

LAWRENCE G. BROWN

Communicated by I. M. Singer, June 23, 1975

1. Introduction. We wish to announce several related results which demonstrate a relationship between operator theory and algebraic K-theory. Some of these results concern extensions of C*-algebras (cf. [4], [5]) and complement the results of [4]. Others concern the trace and determinant invariants defined in [7].

2. Extensions of C*-algebras. Let \(H \) be a separable infinite dimensional Hilbert space, \(L(H) \) the algebra of bounded linear operators on \(H \), \(K \) the ideal of compact operators, and \(A = L(H)/K \). In [4] and [5] \(\text{Ext}(X) \) was defined as the set of equivalence classes of C*-algebra extensions, \(0 \to K \to E \to C(X) \to 0 \), for \(X \) a compact metric space and \(C(X) \) the algebra of continuous complex functions on \(X \). \(\text{Ext}(A) \) was also described as unitary equivalence classes of *-isomorphisms \(\tau: C(X) \to A \). It was shown that \(\text{Ext}(X) \) is a group and that it gives rise to a generalized homology theory which is related to K-theory in roughly the same way as homology is related to cohomology. A Bott periodicity map, \(\text{Per}: \text{Ext}(S^2 X) \to \text{Ext}(X) \), was defined and was proved to be injective for all \(X \) and surjective for smooth \(X \). Also \(\text{Ext}(X) \) was given the structure of a not necessarily Hausdorff topological group, and the closure of the identity was called \(\text{PExt}(X) \).

Theorem 1. \(\text{Per} \) is surjective for all \(X \).

Theorem 2. There is a natural short exact sequence,

\[
0 \to \text{Ext}_2^1(K^0(X), \mathbb{Z}) \to \text{Ext}(X) \xrightarrow{\gamma} \text{Hom}(K^1(X), \mathbb{Z}) \to 0,
\]

which splits noncanonically.

Corollary. \(\text{PExt}(X) \) is the maximum divisible subgroup of \(\text{Ext}(X) \).

Theorem 3. If \(\tau_t: C(X) \to A, 0 \leq t \leq 1 \), is a continuous family in the sense that \(\tau_t(f) \) is continuous for each \(f \in C(X) \), then each \(\tau_t \) defines the same element of \(\text{Ext}(X) \).

For a more leisurely account of these results, see [3]. See also [4], [5], [8]. \(\text{Ext} \) satisfies parallel axioms to the Steenrod homology theory [11], whose axiomatic description in [10] plays a key role in the proofs. Algebraic K-theory

AMS (MOS) subject classifications (1970). Primary 46L05.

1Research partially supported by a grant from the National Science Foundation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(cf. [9]) also plays a key role by yielding a natural definition of an isomorphism $\kappa: \ker \gamma \to \text{Ext}^1_2(K^0(X), \mathbb{Z})$. κ is defined by applying the algebraic K-theory long exact sequence to $0 \to K \to E \to C(X) \to 0$ and obtaining (in part)

$$0 \to \mathbb{Z} \cong K_0(K) \to K_0(E) \to K_0(C(X)) \cong K^0(X) \to 0.$$

We are grateful to J. Milnor, J. Kaminker, and C. Schochet for valuable communications.

In another context [2] we have defined an almost polonais group as the quotient of a polonais (complete, separable, metrizable) group by a normal subgroup which is a continuous homomorphic image of a polonais group. These are not necessarily Hausdorff topological groups with some additional structure, and the abelian ones form an abelian category. Theorem 2 shows that Ext(X) is the direct sum of two almost polonais groups, and we would like to know whether Ext(X) is naturally such an object.

3. The trace and determinant invariants. Let \mathfrak{A} be a \ast-subalgebra of $L(H)$ such that \mathfrak{A} contains the trace class, J, and is commutative modulo J. As in [7], we obtain a symbol map $\phi: \mathfrak{A} \to C(X)$. Here we assume $X \subset \mathbb{R}^n$ and range $\phi = C^\infty(X)$, the algebra of restrictions to X of C^∞ functions on \mathbb{R}^n. Let \overline{X} be a closed ball containing X. Helton and Howe [7] defined a trace invariant $I: \Omega \to C$, where Ω is the space of exact C^∞ 2-forms on \overline{X} and $I(df \wedge dg) = \text{tr}(AB - BA)$, where A and B are elements of \mathfrak{A} such that $\phi(A) = f \mid X$ and $\phi(B) = g \mid X$. If A and B are invertible, Helton and Howe also considered $\text{det}(ABA^{-1}B^{-1}) = \delta(\phi(A), \phi(B))$. δ is a bimultiplicative form on a subgroup of the group of units in $C^\infty(X)$. In [1] we showed, in the special case $X \subset \mathbb{R}^2$, that δ can be extended to a form d on the whole group of units and that d can be calculated from the trace invariant. As suggested to us by H. Sah, the algebraic properties of d provided an analogy with algebraic K-theory. We will now define a new determinant invariant, $d_1: K_2(C^\infty(X)) \to C^\ast$, such that d is the restriction of d_1 to the Steinberg symbols.

Consider the short exact sequence, $0 \to J \to \mathfrak{A} \to \mathfrak{A}/J \to 0$, and the corresponding algebraic K-theory long exact sequence $\cdots \to K_2(\mathfrak{A}/J) \to K_1(J) \to K_1(\mathfrak{A}) \cdots$. Using the definition of $K_1(J)$ and the most basic properties of the determinant (on the determinant class, $J + I \subset L(H)$), we obtain a map det: $K_1(J) \to C^\ast$. This pulls back to d: $K_2(\mathfrak{A}/J) \to C^\ast$. Using analytic techniques (mainly suggested by [7]), we can modify d' to obtain d_1.

The restriction of d_1 to $K_2'(C^\infty(\overline{X})) \to K_2(\mathfrak{A}/J)$ (which is the same as the kernel of $K_2(C^\infty(X)) \to K^2(X)$), can be calculated from the trace invariant: Roughly one shrinks \overline{X} to a point and differentiates with respect to “time”. In this way we obtain a map $\theta: K_2(C^\infty(\overline{X})) \to \Omega$, and $d_1(C) = \exp(I(\theta(C)))$, for $C \in K_2(C^\infty(\overline{X}))$ and C its image in $K_2(C^\infty(X))$. The above leads to an explicit formula for θ. See [6] for the relation and application of this formula to algebraic K-theory. Although \overline{C} is not uniquely determined by
C, the restriction of $\theta(\tilde{C})$ to X is unique. If l vanishes at 2-forms which vanish on X, then we obtain $l': K_2 \to C$. According to [7], this occurs precisely when $\overline{\gamma}_2 \in \text{Ext}(X)$, and one can then ask whether l' can be extended to $l'': K_2(C^0(X)) \to C$ such that $d_1 = \exp(l'')$. This leads to an element of $\text{Ext}^2(K^0(X), \mathbb{Z})$, which vanishes precisely when l'' exists.

Remarks

1. Although the construction just completed motivated κ, we do not know whether the two constructions actually agree.

2. The algebra \mathfrak{A} is what Helton and Howe call a "one dimensional" algebra. It would be nice to extend the above to the "k-dimensional" algebras of [7]. There seem to be two difficulties: (a) So far as we know, no existing treatment of K_n for $n > 2$ lends itself to explicit formulas as well as [9]. (b) In the k-dimensional case the determinant invariant ought to be defined on K_{2k}; but if we do what is natural in the context of [7], we get something on K_{k+2} (for $k > 1$). Thus perhaps something is wrong for $k > 2$.

We hope that these difficulties will eventually be surmounted and that the result will be significant mutual enrichment of operator theory and algebraic K-theory.

References

2. ———, *Group cohomology of topological groups* (in preparation).

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907