A SUFFICIENT CONDITION
FOR \(k \)-PATH HAMILTONIAN DIGRAPHS
BY JOHN ROBERTS
Communicated by Walter Gautschi, September 7, 1975

A directed graph (or digraph) \(D \) is: (1) \textit{traceable} if \(D \) has a hamiltonian path; (2) \textit{hamiltonian} if \(D \) has a hamiltonian cycle; (3) \textit{strongly hamiltonian} if \(D \) has arcs and each arc lies on a hamiltonian cycle; (4) \textit{hamiltonian-connected} if \(D \) has a hamiltonian \(u \)-\(v \) path for every pair of distinct vertices \(u \) and \(v \); (5) \textit{\(k \)-path traceable} if every path of length not exceeding \(k \) is contained in a hamiltonian path; and (6) \textit{\(k \)-path hamiltonian} if every path of length not exceeding \(k \) is contained in a hamiltonian cycle.

The indegree and the outdegree of a vertex \(v \) are denoted by \(\text{id}(v) \) and \(\text{od}(v) \) respectively. A digraph \(D \) of order \(p \) is of Ore-type (\(k \)) if \(\text{od}(u) + \text{id}(u) > p + k \) whenever \(u \) and \(v \) are distinct vertices for which \(uv \) is not an arc of \(D \).

In this research announcement we outline a proof of the following result, a complete proof of which will appear elsewhere, and present some consequences of it.

THEOREM. If a nontrivial digraph \(D \) is of Ore-type (\(k \)), \(k \geq 0 \), then \(D \) is \(k \)-path hamiltonian.

PROOF. Let \(D \) have order \(p \geq 2 \). First, observe that \(D \) is strong. Since the result holds if \(D \) is the complete symmetric digraph \(K_p \), we assume that \(D \neq K_p \). This in turn implies that \(p \geq k + 4 \). Also, it can be shown that every path of length not exceeding \(k \) is contained in a path of length \((k + 1) \) and this longer path is contained in a cycle.

Suppose \(D \) has a path \(P: v_1, v_2, \ldots, v_{k+1} \) of length \(k \) which is contained in no hamiltonian cycle. Let \(C: v_1, v_2, \ldots, v_n, v_1 \) be any longest cycle containing \(P \). Then, \(V = V(D) - V(C) \neq \emptyset \), where \(V(D) \) and \(V(C) \) denote the vertex sets of \(D \) and \(C \) respectively.

Now, assume that \(V \) has distinct vertices \(u \) and \(v \) for which \(uv \notin E(D) \) and the subdigraph \(\langle V \rangle \) induced by \(V \) has no \(u \)-\(v \) path. Then, \(uu \notin E(D) \) implies that

\[
p + k - \text{od}(u) + \text{id}(u) \leq p - n - 2 + \text{od}(v, C) + \text{id}(u, C)
\]

where \(\text{od}(u, C) \) and \(\text{id}(u, C) \) denote the number of vertices in \(C \) which are
dominated by v and dominate u, respectively. Then (1) implies that $n + k + 2 \leq \text{od}(v, C) + \text{id}(u, C)$ and this implies that $\langle V \rangle$ has no $u-v$ path. For suppose that $\langle V \rangle$ has such a path. Since C is a longest cycle containing P, the digraph D cannot contain both of the arcs $v_i u$ and $v_{i+1} u$ for $k + 1 \leq i \leq n$. But this implies that $\text{id}(u, C) + \text{od}(v, C) \leq n + k$ and this is a contradiction. Using the fact that $uv \notin E(D)$, we obtain

$$p + k \leq \text{od}(u) + \text{id}(v) \leq p - n - 2 + \text{od}(u, C) + \text{id}(v, C)$$

which also implies that $n + k + 2 \leq \text{od}(u, C) + \text{id}(v, C)$. Together with the preceding result, this implies that either

$$n + k + 2 \leq \text{od}(u, C) + \text{id}(u, C) \quad \text{or} \quad n + k + 2 \leq \text{od}(v, C) + \text{id}(u, C).$$

In either case, it follows that D has a longer cycle containing P which is impossible. Thus, for distinct vertices u and v of $\langle V \rangle$, either $uv \in E(\langle V \rangle)$ or $\langle V \rangle$ has a $v-u$ path. If $\langle V \rangle$ has a $v-u$ path, then $\text{od}(u, C) + \text{id}(v, C) \leq n + k$. Thus,

$$\text{od}(u, \langle V \rangle) + \text{id}(v, \langle V \rangle) \geq p - n = |V|$$

whenever $u \neq v$ and $uv \notin E(\langle V \rangle)$. Hence, $\langle V \rangle$ is strongly connected.

Let W be the subpath $v_{k+1}, v_{k+2}, \ldots, v_n, v_{n+1} = v_1$ of C. Since $n \geq k + 2$, the path W has order at least 3; in fact W has at least 3 vertices which are dominated by vertices of V and at least 3 vertices which dominate vertices of V. It now suffices to consider the following two cases: (i) the path W has a non-trivial subpath W' whose initial vertex dominates a vertex of V and whose terminal vertex is dominated by a vertex of V; and (ii) the path W has no such subpath. Since consideration of either case leads to contradiction, our assumption that $V \neq \emptyset$ must be false. Hence, C is a hamiltonian cycle and the theorem follows.

Let $m, n \geq 1$ and $k \geq 0$. The symmetric join $K_{k+2} + (K_m \cup K_n)$ of K_{k+2} and the disjoint union of K_m and K_n is an Ore-type (k) digraph which is not $(k + 1)$-path hamiltonian. Hence, the result is “best possible.”

The preceding result generalizes several results from graph theory and digraph theory, which we present below.

Corollary. If the digraph D is of Ore-type (k), $k \geq -1$, then D is $(k + 1)$-path traceable.

Corollary (Woodall [5]). If a nontrivial digraph is of Ore-type (0), then it is hamiltonian.

Corollary. If a nontrivial digraph is of Ore-type (1), then it is both strongly hamiltonian and hamiltonian-connected.

A (undirected) graph of order p is of Ore-type (k) if the sum of the degrees
of nonadjacent vertices is at least \((p + k)\). By considering symmetric digraphs, we obtain the following results.

Corollary (Ore [3]). *If a graph with order at least 3 is of Ore-type (0), then it is hamiltonian.*

Corollary (Ore [4]). *If a graph is of Ore-type (1), then it is hamiltonian-connected.*

Corollary (Kronk [2]). *If a graph of order \(p \geq 3\) is of Ore-type \((k)\), \(k \geq 0\), then it is \(k\)-path hamiltonian.*

Corollary (Kapoor and Theckedath [1]). *If a graph is of Ore-type \((k)\), \(k \geq -1\), then it is \((k+1)\)-path traceable.*

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISVILLE, LOUISVILLE, KENTUCKY 40208