The Dirichlet problem for a complex Monge-Ampere equation
HTML articles powered by AMS MathViewer
- by Eric Bedford and B. A. Taylor PDF
- Bull. Amer. Math. Soc. 82 (1976), 102-104
References
- A. D. Aleksandrov, Dirichlet’s problem for the equation $\textrm {Det}\,||z_{ij}|| =\varphi (z_{1},\cdots ,z_{n},z, x_{1},\cdots , x_{n})$. I, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 13 (1958), no. 1, 5–24 (Russian, with English summary). MR 0096903
- H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries, Trans. Amer. Math. Soc. 91 (1959), 246–276. MR 136766, DOI 10.1090/S0002-9947-1959-0136766-9
- S. S. Chern, Harold I. Levine, and Louis Nirenberg, Intrinsic norms on a complex manifold, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 119–139. MR 0254877
- P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris-London-New York; distributed by Dunod Éditeur, Paris, 1968 (French). MR 0243112
- A. V. Pogorelov, Monge-Ampère equations of elliptic type, P. Noordhoff Ltd., Groningen, 1964. Translated from the first Russian edition by Leo F. Boron with the assistance of Albert L. Rabenstein and Richard C. Bollinger. MR 0180763
- A. V. Pogorelov, The Dirichlet problem for the multidimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR 201 (1971), 790–793 (Russian). MR 0293228 7. Y. T. Siu, Extension of meromorphic maps, Ann. of Math. (to appear).
- J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968/1969), 143–148. MR 0227465, DOI 10.1512/iumj.1969.18.18015
Additional Information
- Journal: Bull. Amer. Math. Soc. 82 (1976), 102-104
- MSC (1970): Primary 32F05, 35D05; Secondary 32E99
- DOI: https://doi.org/10.1090/S0002-9904-1976-13977-8
- MathSciNet review: 0393574