## The Dirichlet problem for a complex Monge-Ampere equation

HTML articles powered by AMS MathViewer

- by Eric Bedford and B. A. Taylor PDF
- Bull. Amer. Math. Soc.
**82**(1976), 102-104

## References

- A. D. Aleksandrov,
*Dirichlet’s problem for the equation $\textrm {Det}\,||z_{ij}|| =\varphi (z_{1},\cdots ,z_{n},z, x_{1},\cdots , x_{n})$. I*, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr.**13**(1958), no. 1, 5–24 (Russian, with English summary). MR**0096903** - H. J. Bremermann,
*On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries*, Trans. Amer. Math. Soc.**91**(1959), 246–276. MR**136766**, DOI 10.1090/S0002-9947-1959-0136766-9 - S. S. Chern, Harold I. Levine, and Louis Nirenberg,
*Intrinsic norms on a complex manifold*, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 119–139. MR**0254877** - P. Lelong,
*Fonctions plurisousharmoniques et formes différentielles positives*, Gordon & Breach, Paris-London-New York; distributed by Dunod Éditeur, Paris, 1968 (French). MR**0243112** - A. V. Pogorelov,
*Monge-Ampère equations of elliptic type*, P. Noordhoff Ltd., Groningen, 1964. Translated from the first Russian edition by Leo F. Boron with the assistance of Albert L. Rabenstein and Richard C. Bollinger. MR**0180763** - A. V. Pogorelov,
*The Dirichlet problem for the multidimensional analogue of the Monge-Ampère equation*, Dokl. Akad. Nauk SSSR**201**(1971), 790–793 (Russian). MR**0293228**
7. Y. T. Siu, Extension of meromorphic maps, Ann. of Math. (to appear).
- J. B. Walsh,
*Continuity of envelopes of plurisubharmonic functions*, J. Math. Mech.**18**(1968/1969), 143–148. MR**0227465**, DOI 10.1512/iumj.1969.18.18015

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**82**(1976), 102-104 - MSC (1970): Primary 32F05, 35D05; Secondary 32E99
- DOI: https://doi.org/10.1090/S0002-9904-1976-13977-8
- MathSciNet review: 0393574