DIRECT SUM PROPERTIES OF QUASI-INJECTIVE MODULES
BY K. R. GOODEARL
Communicated by Barbara Osofsky, October 15, 1975

Abstract. A functorial method is described by which certain problems can be transferred from quasi-injective modules to nonsingular injective modules. Applications include the uniqueness of nth roots: If \(A \) and \(B \) are quasi-injective modules such that \(A^n \cong B^n \), then \(A \cong B \).

All rings in this paper are associative with unit, all modules are unital right modules, and endomorphism rings act on the left. The letter \(R \) denotes a ring. We use \(J(-) \) to denote the Jacobson radical.

Recall that a module \(A \) is quasi-injective provided any homomorphism of a submodule of \(A \) into \(A \) extends to an endomorphism of \(A \). For example, all injective modules and all semisimple (completely reducible) modules are quasi-injective.

Theorem 1. Let \(A \) be a quasi-injective right \(R \)-module, and set \(Q = \text{End}_R(A) \). Then \(Q/J(Q) \) is a regular, right self-injective ring, and idempotents can be lifted modulo \(J(Q) \).

Proof. Regularity and idempotent-lifting were proved by Faith and Utumi [2, Theorems 3.1, 4.1]. Self-injectivity was proved by Osofsky [6, Theorem 12] and Renault [7, Corollaire 3.5].

Proposition 2. Let \(A \) be a quasi-injective right \(R \)-module, and set \(Q = \text{End}_R(A) \). Let \(\mathcal{U} \) denote the category of all direct summands of finite direct sums of copies of \(A \), and let \(\mathcal{P} \) denote the category of all finitely generated projective right \((Q/J(Q)) \)-modules. Then there exists an additive (covariant) functor \(F: \mathcal{U} \to \mathcal{P} \) with the following properties.

(a) For all \(B, C \in \mathcal{U} \), the induced map \(\text{Hom}_R(B, C) \to \text{Hom}_P(F(B), F(C)) \) is surjective.

(b) Given any \(P \in \mathcal{P} \), there exists \(B \in \mathcal{U} \) such that \(F(B) \cong P \).

(c) A map \(f \in \mathcal{U} \) is an isomorphism if and only if \(F(f) \) is an isomorphism in \(\mathcal{P} \).

Proof. If \(P_0 \) denotes the category of all finitely generated projective right \(Q \)-modules, then \(\text{Hom}_R(A, -) \) defines a category equivalence \(G: \mathcal{U} \to P_0 \). Second, \((-) \otimes_Q Q/J(Q) \) gives us an additive functor \(H: P_0 \to \mathcal{P} \), and we set \(F = HG \).
Properties (a) and (c) hold without any hypotheses on \(A \), while (b) follows from the regularity of \(Q/J(Q) \) and the fact that idempotents lift modulo \(J(Q) \).

Over a regular, right self-injective ring, all finitely generated projective right modules are injective and nonsingular. Thus the functor \(F \) in Proposition 2 enables us to transfer problems from the quasi-injective module \(A \) to the nonsingular injective module \(F(A) \).

Theorem 3. Let \(A, B \) be quasi-injective right \(R \)-modules, and let \(n \) be a positive integer.

(a) If \(A^n \) is isomorphic to a direct summand of \(B^n \), then \(A \) is isomorphic to a direct summand of \(B \).

(b) If \(A^n \cong B^n \), then \(A \cong B \).

Proof. Setting \(Q = \text{End}_R(B) \), we use Proposition 2 to transfer the problem to nonsingular injective right \((Q/J(Q))-\)modules, where the required properties follow from [5, Proposition 9.1].

Definition. A module \(A \) is directly finite provided \(A \) is not isomorphic to any proper direct summand of itself.

Theorem 4 [1, Proposition 5]. Let \(A \) be a directly finite quasi-injective right \(R \)-module. If \(B \) and \(C \) are any right \(R \)-modules such that \(A \otimes B \cong A \otimes C \), then \(B \cong C \).

Proof. If \(P \) is any directly finite nonsingular injective module, then [8, Corollary 8] (or [5, Theorem 3.8]) shows that isomorphic direct summands of \(P \) have isomorphic complements. Using Proposition 2, the module \(A \) has the same property. In addition, [3, Theorem 3] shows that \(A \) has the exchange property, hence cancellation follows from [4, Theorem 2].

Corollary 5. If \(A_1, \ldots, A_n \) are directly finite quasi-injective right \(R \)-modules, then \(A_1 \oplus \cdots \oplus A_n \) is directly finite (but not necessarily quasi-injective).

Proof. Obviously cancellation carries over from the \(A_i \) to their direct sum. On the other hand, \(\mathbb{Z}/2\mathbb{Z} \) and \(Q \) are directly finite quasi-injective \(\mathbb{Z} \)-modules whose direct sum is not quasi-injective.

Theorem 6. If \(A \) is a quasi-injective right \(R \)-module, then there exists a decomposition \(A = B \oplus C \) such that \(B \) is directly finite and \(C \cong C^2 \).

Proof. The corresponding decomposition for nonsingular injective modules is given by [5, Proposition 8.4 and Theorem 7.2].

Corollary 7. Let \(A \) be a quasi-injective right \(R \)-module. Then \(A \) is directly finite if and only if \(A \) has no nonzero direct summands \(C \) for which \(C \cong C^2 \).
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112