A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications
HTML articles powered by AMS MathViewer
- by Julian D. Laderman PDF
- Bull. Amer. Math. Soc. 82 (1976), 126-128
References
-
1. R. Brent, Algorithms for matrix multiplication, Technical Report STAN-CS-70-157, Dept. of Computer Science, Stanford Univ., 1970.
- Roger Brockett and David Dobkin, On the number of multiplications required for matrix multiplication, SIAM J. Comput. 5 (1976), no. 4, 624–628. MR 459002, DOI 10.1137/0205041
- N. Gastinel, Sur le calcul des produits de matrices, Numer. Math. 17 (1971), 222–229 (French, with English summary). MR 295550, DOI 10.1007/BF01436378
- J. E. Hopcroft and L. R. Kerr, On minimizing the number of multiplications necessary for matrix multiplication, SIAM J. Appl. Math. 20 (1971), 30–36. MR 274293, DOI 10.1137/0120004
- J. Hopcroft and J. Musinski, Duality applied to the complexity of matrix multiplication and other bilinear forms, SIAM J. Comput. 2 (1973), 159–173. MR 471439, DOI 10.1137/0202013 6. I. Munro, Problems related to matrix multiplication, Proc. Courant Inst. Sympos. Computational Complexity, 1971, pp. 137-151.
- Volker Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356. MR 248973, DOI 10.1007/BF02165411 8. S. Winograd, A new algorithm for inner product, IEEE Trans. Computers 17 (1968), 693-694.
- S. Winograd, On multiplication of $2\times 2$ matrices, Linear Algebra Appl. 4 (1971), 381–388. MR 297115, DOI 10.1016/0024-3795(71)90009-7
Additional Information
- Journal: Bull. Amer. Math. Soc. 82 (1976), 126-128
- MSC (1970): Primary 68A10, 65F30; Secondary 68A20, 65H10
- DOI: https://doi.org/10.1090/S0002-9904-1976-13988-2
- MathSciNet review: 0395320