Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1566850
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Harry Hochstadt
Title: The functions of mathematical physics
Additional book information: Pure and Applied Mathematics, Vol. 23, Wiley-Interscience, New York, 1971, xi+322 pp., $17.50.

References [Enhancements On Off] (What's this?)

1.
E. Cartan, Sur la determination d'un systeme orthogonal complet dans un espace Riemann symmetrique clos, Rend. Cire. Mat. Palermo 53 (1929), 217-252.
2.
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions. Vols. 1-3, McGraw-Hill, New York, 1953, 1955. MR 15,419; 16,586.
  • Géza Freud, Orthogonale Polynome, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 33, Birkhäuser Verlag, Basel-Stuttgart, 1969 (German). MR 0481888
  • Harry Hochstadt, Special functions of mathematical physics, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. MR 0153137
  • E. W. Hobson, The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Co., New York, 1955. MR 0064922
  • N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Translated and edited by Richard A. Silverman. MR 0174795
  • 7.
    Y. L. Luke, The special functions and their approximations. Vols. 1, 2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR 39 #3039; 40 #2909.
  • Thomas M. Macrobert, Functions of a Complex Variable, Macmillan & Co., Ltd., London, 1947. 3d ed. MR 0021087
  • T. M. MacRobert, Spherical harmonics. An elementary treatise on harmonic functions with applications, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford-New York-Toronto, Ont., 1967. Third edition revised with the assistance of I. N. Sneddon. MR 0220985
  • Elna B. McBride, Obtaining generating functions, Springer Tracts in Natural Philosophy, Vol. 21, Springer-Verlag, New York-Heidelberg, 1971. MR 0279355
  • Willard Miller Jr., Lie theory and special functions, Mathematics in Science and Engineering, Vol. 43, Academic Press, New York-London, 1968. MR 0264140
  • F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697
  • Earl D. Rainville, Special functions, The Macmillan Company, New York, 1960. MR 0107725
  • G. Sansone, Orthogonal functions, Pure and Applied Mathematics, Vol. IX, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. Revised English ed; Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. MR 0103368
  • Ian N. Sneddon, Special functions of mathematical physics and chemistry, Oliver and Boyd, Edinburgh-London; Interscience Publishers, Inc., New York, 1956. MR 0080170
  • 16.
    B. Spain and M. G. Smith, Functions of mathematical physics, Van Nostrand Rheinhold, London, 1970.
  • Gábor Szegő, Orthogonal polynomials, 3rd ed., American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1967. MR 0310533
  • James D. Talman, Special functions: A group theoretic approach, W. A. Benjamin, Inc., New York-Amsterdam, 1968. Based on lectures by Eugene P. Wigner; With an introduction by Eugene P. Wigner. MR 0239154
  • 19.
    C. A. Truesdell, An essay toward a unified theory of special functions based upon the functional equation (∂/∂z)F(z,α) = F(z,α + 1), Ann. of Math. Studies, no. 18, Princeton Univ. Press, Princeton, N.J., 1948. MR 9, 431.
  • N. Ja. Vilenkin, Special functions associated with class $1$ representations of the motion groups of spaces of constant curvature, Trudy Moskov. Mat. Obšč. 12 (1963), 185–257 (Russian). MR 0162887
  • N. Ja. Vilenkin, Spetsial′nye funktsii i teoriya predstavleniĭ grupp, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0209523
  • G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
  • E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759

  • Review Information:

    Reviewer: Ian N. Sneddon
    Journal: Bull. Amer. Math. Soc. 82 (1976), 237-243
    DOI: https://doi.org/10.1090/S0002-9904-1976-14001-3