Abstract. We give generalizations and extensions concerning integrability of shifted and weighted trigonometric series of Boas and Rees-Stanojević.

Boas [1] proved the following two integrability theorems for certain weighted sine and cosine series.

Theorem A. Let \(g(x) = \sum_{n=1}^{\infty} b(n) \sin nx \) where \(b(n) \) decreases to zero. Then for \(0 \leq \gamma < 1 \), \(x^{-\gamma}g(x) \in L[0, \pi] \) if and only if \(\sum_{n=1}^{\infty} n^{\gamma-1} b(n) < \infty \).

Theorem B. Let \(f(x) = \sum_{n=1}^{\infty} a(n) \cos nx \) where \(a(n) \) decreases to zero. Then for \(0 < \gamma < 1 \), \(x^{-\gamma}f(x) \in L[0, \pi] \) if and only if \(\sum_{n=1}^{\infty} n^{\gamma-1} a(n) < \infty \).

Recently Rees and Stanojević [2] proved a similar theorem for a shifted sine series.

Theorem C. Let \(g(x) = \sum_{n=1}^{\infty} b(n) \sin(n + \alpha) x \) where \(b(n) \) decreases to zero. Then \(x^{-1}g(x) \in L[0, \pi] \) if and only if \(\sum_{n=1}^{\infty} b(n) < \infty \).

Theorem C is a by-product of an integrability theorem for certain cosine sums introduced in [2]. It follows after summation by parts of these cosine sums due to the form of the Dirichlet kernel. This paper gives extensions of Theorems A and B in the direction indicated by Theorem C.

Theorem 1. Let \(g(x) = \sum_{n=1}^{\infty} b(n) \sin(n + \alpha) x \) where \(b(n) \) decreases to zero and \(0 \leq \alpha \leq \frac{\pi}{2} \). Then for \(0 \leq \gamma < 1 \), \(x^{-\gamma}g(x) \in L[0, \pi] \) if and only if \(\sum_{n=1}^{\infty} n^{\gamma-1} b(n) < \infty \).

Theorem 2. Let \(f(x) = \sum_{n=1}^{\infty} a(n) \cos(n + \alpha) x \) where \(a(n) \) decreases to zero and \(0 \leq \alpha \leq \frac{\pi}{2} \). Then for \(0 < \gamma < 1 \), \(x^{-\gamma}f(x) \in L[0, \pi] \) if and only if \(\sum_{n=1}^{\infty} n^{\gamma-1} a(n) < \infty \).

Proofs and details of these theorems will appear elsewhere.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-ROLLA, ROLLA, MISSOURI 65401

Key words and phrases. Integrability of shifted sine series, integrability of shifted cosine series.