Projective Hjelmslev planes (PH-planes) are a generalization of projective planes in which each point-pair is joined by at least one line and, dually, each line-pair has a nontrivial intersection. Multiply joined points (and multiply intersecting lines) are called neighbor points (and neighbor lines). By hypothesis, the neighbor relations of a PH-plane \(\mathcal{A} \) are equivalence relations which induce a canonical epimorphism from \(\mathcal{A} \) to a projective plane \(\overline{\mathcal{A}} \). If \(\mathcal{A} \) is finite, there exists \([4]\) an integer \(t \) such that the inverse image of every point and every line of \(\overline{\mathcal{A}} \) contains precisely \(t^2 \) elements. If the order of \(\overline{\mathcal{A}} \) is \(r \), we say that \(\mathcal{A} \) is a \((t, r)\) PH-plane. We are concerned with the problem of determining the spectrum \(S \) of all admissible pairs \((t, r)\). Since the finite projective planes are simply the \((1, r)\) PH-planes, our concern is with a generalization of the classical existence question for projective planes.

Prior to this announcement, the only pairs \((t, r)\) known to belong to \(S \) satisfy the requirements:

1. \(t \) is a power of \(r \),
2. \(r \) is a prime power.

Conversely, all such pairs do belong to \(S \), and all arise as the invariants of the Desarguesian-Pappian PH-planes investigated by Klingenberg \([5]\). A deep theorem of Artmann \([1]\) allows one to assert that \((t, r)\) is in \(S \) if (1) holds and if \(r \) is the order of a projective plane. Whether this is any improvement over the previous result is, however, still uncertain.

Nonexistence results to date are also few in number. The celebrated Bruck-Ryser Theorem gives infinitely many values of \(r \) for which \((1, r) \notin S \). Clearly \((1, r) \notin S \) implies \((t, r) \notin S \) for any \(t \). Kleinfield \([4]\) has observed that \((t, r) \in S \) with \(t \neq 1 \) implies \(t \geq r \). Most recently, Drake \([2]\) has proved that \((t, r) \in S \) with \(1 \neq t \neq r \) implies that \(t = 4 \) or \(8 \) or that \(r < t + 1 - \sqrt{(2t + 3)} \).

The current note is written to announce the following two existence results:

Key words and phrases. Projective Hjelmslev plane, projective plane, permutation and incidence matrices, Desarguesian, Pappian.

\(^{1}\)Supported by NSF Grant GP-39059, a University of Florida Faculty Development Grant and an Alexander von Humboldt Dozentenstipendium.

Copyright © 1976, American Mathematical Society
THEOREM 1. Let \(t, r, q, b \) be positive integers such that \((t, r) \in S, q \) is a prime power and \(q + 1 = tr + 1 \). Then \((t \cdot q^b, r) \in S\).

THEOREM 2. Let \(t, q, b \) be positive integers such that \((t, t) \in S, q \) is a prime power and \(2(t + 1) \leq q + 1 \leq t(t + 1) \). Then \((t \cdot q^b, t) \in S\).

Details will be given elsewhere of a construction which simultaneously yields both theorems and a little more. Theorem 1, for example, allows one to conclude that \((8 \cdot 23^b, 2) \in S \) for arbitrary \(b \). The actual Lenz-Drake construction applied to the "extremal" \((8, 2)\) PH-planes of Shult and Drake [3] yields the additional information that \((8 \cdot 19^b, 2), (8 \cdot 17^b, 2) \in S\).

We remark that Theorem 1 may be applied either recursively or in tandem with Theorem 2. For example, since \((2, 2) \in S\), Theorem 1 (or 2) yields \((2 \cdot 5^b, 2) \in S\). A second application of Theorem 1 then yields \((2 \cdot 5 \cdot 29^d, 2), (2 \cdot 25 \cdot 149^d, 2) \in S\).

The construction is largely elementary. We mention several of the basic ideas, presenting them in generality sufficient for the proof of Theorem 1. If \(M = [m_{ij}] \) is an incidence matrix for a \((t, r)\) PH-plane \(A\), then every row and every column of \(M \) contains precisely \(tr + 1 \) one's. Thus König's Lemma implies that \(M \) is a sum of permutation matrices; consequently, it is possible to obtain a matrix \(N = [n_{ij}] \) of the same size as \(M \) such that \(n_{ij} = 0 \) precisely when \(m_{ij} = 0 \) and so that every integer from 1 to \(tr + 1 \) appears in each row and each column of \(N \). Next one seeks a suitable set of \(tr + 1 \) square matrices \(B_1, B_2, \ldots \) of order \(s^2 \) where \(s = q^b \). One then obtains a matrix \(G \) from \(N \) by substituting \(B_i \) for \(i \) when \(i \geq 1 \) and replacing each 0 by the square zero matrix of order \(s^2 \). For \(G \) to represent the desired \((t \cdot s, r)\) PH-plane, it suffices to demand that the matrices \(B_i \) satisfy:

\[
(3) \quad B_i \cdot (B_j)^T = (B_j)^T \cdot B_i = J \quad \text{when } i \neq j
\]

and

\[
(4) \quad \sum B_i \cdot (B_i)^T, \quad \sum (B_i)^T \cdot B_i \geq 2J;
\]

here \(J \) denotes the matrix of all one's, and one writes \([x_{ij}] \geq [y_{ij}]\) to mean that \(x_{ij} \geq y_{ij} \) for all \(i, j \).

The \(B_i \) can be obtained from an \((s, q)\) PH-plane \(A'\) of the type investigated by Klingenberg and mentioned above. One obtains an incidence matrix \(D = [D_{ij}] \) for \(A'\) so written that every \(D_{ij} \) is square of order \(s^2 \) and successive sets of \(s^2 \) columns (rows) represent neighbor classes of lines (points). Let \(E_1, E_2, \ldots \) be the nonzero matrices among the \(D_{1x} \); \(F_1, F_2, \ldots \) be the nonzero matrices among the \(D_{x1} \). Then there exist permutation matrices \(P_i, Q_i \) such that \(E_i P_i = Q_i F_i \equiv B_i \) for all \(i \), and these \(B_i \) satisfy conditions (3) and (4).
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611 (Current address of David A. Drake)

FACHBEREICH MATHEMATIK DER FREIEN UNIVERSITÄT, 1 BERLIN 33, GERMANY (Current address of Hanfried Lenz)