COBORDISM OPERATIONS AND SINGULARITIES OF MAPS
BY CLINT MCCORRY
Communicated by Glen Bredon, October 30, 1975

If f is a differentiable map of smooth manifolds, the critical set $\Sigma(f)$ is not a manifold, in general. However, there is a canonical resolution of the singularities of $\Sigma(f)$ (for generic f), due to I. Porteous [6]. This resolution can be used to give a geometric description of T. tom Dieck's Steenrod operations in unoriented cobordism [7]. This was suggested to me by Jack Morava, as a parallel to my discription of ordinary mod 2 Steenrod operations using branching cycles of maps of n-circuits [5].

1. Singularities of vector bundle maps. Let $\xi^n = (E \to X)$ and $\eta^p = (F \to X)$ be real vector bundles over the smooth manifold X (without boundary), and let $g: E \to F$ be a vector bundle map. That is, g is smooth, and for each $x \in X$, g sends the fiber E_x to the fiber F_x by a linear map g_x. The critical set $\Sigma(g)$ is $\{x \in X, \text{rank}(g_x) < \min(n, p)\}$. Let $P(\xi) = (P(E) \to X)$ be the projectification of ξ, i.e. the bundle whose fiber over x is the set of one-dimensional subspaces of E_x. Set $\tilde{\Sigma}(g) = \{l \in P(E), l \subset \text{kernel}(g)\}$. The projection $\tilde{\Sigma}(g) \to X$ is proper, and if $n < p$, its image is $\Sigma(g)$. (If $n > p$, its image is all of X.)

Lemma. (a) If $g: \xi^n \to \eta^p$ is a generic vector bundle map [4] over the d-manifold X, $\tilde{\Sigma}(g)$ is a $(d - i)$-manifold, where $i = p - n + 1$.

(b) If $h: \xi^n \to \eta^p$ is another such map, $\tilde{\Sigma}(h) \to X$ is properly cobordant with $\tilde{\Sigma}(g) \to X$.

This lemma is proved by considering the canonical bundle map G over $\text{Hom}(\xi, \eta)$. A vector bundle map $g: \xi \to \eta$ defines a section of $\text{Hom}(\xi, \eta) \to X$, and $\tilde{\Sigma}(g) \to X$ is the pull-back of $\tilde{\Sigma}(G) \to \text{Hom}(\xi, \eta)$ by this section.

It follows from Quillen's geometric description of smooth unoriented cobordism theory N^* [3] that this construction defines a natural transformation $\sigma: K(X) \to N^*(X)$. If $K(X)$ is defined as the set of all pairs (ξ, η) of bundles over X, modulo the relation $((\xi \oplus \xi, \eta \oplus \xi) \sim (\xi, \eta))$, σ is induced by $(\xi, \eta) \mapsto \tilde{\Sigma}(g)$, where $g: \xi \to \eta$ is a generic map. A dual $\overline{\sigma}$ is defined by $\overline{\sigma}[\xi, \eta] = \sigma[\eta, \xi]$.

AMS (MOS) subject classifications (1970). Primary 55G25, 57D45; Secondary 57D20, 57D75.

Key words and phrases. Critical set, singularity, cobordism, Steenrod operations, vector bundle map.

Support in part by NSF grant GP-43128.

Copyright © 1976, American Mathematical Society

281
σ determines a family of stable cobordism characteristic classes σ_i, i ∈ Z, by setting σ_i(η^n) = σ(e^n, η^n) ∈ N^i(X), where e^n is the trivial n-bundle over X, n = p - i + 1. If \(\xi \) is a stable inverse for \(\xi \), \(\sigma_i(\xi) = \overline{\sigma}_i(\xi) \).

2. **Steenrod operations.** Thom's definition of characteristic classes gives a bijection between stable operations on \(N^* \) and stable \(N^* \) characteristic classes. Let \(\theta^i \) be the operation corresponding to the characteristic class \(\sigma_i \).

Our main result is the following relation between \(\theta = \Sigma \theta^i \) and tom Dieck's internal Steenrod operation \(R \) [7, p. 394]. Let \(P^{i-1} \) be the cobordism operation of degree \(-i\) which sends \(Z \rightarrow X \) to the composition \((R P^i \times Z) \rightarrow Z \rightarrow X \), where \(R P^i \) is real projective \(i \)-space.

Theorem \(\theta \) = PR.

In other words, if \(\alpha \in N^q(X) \), \(\theta^i(\alpha) = \Sigma_i P^{i-1} R^i(\alpha) \). Since \(P^{i-1} = 0 \) for \(j < i \) and \(R^i(\alpha) = 0 \) for \(j > q \), this sum is finite.

It follows that \(\theta \) corresponds to the "expanded square" operation in unoriented piecewise-linear cobordism [1].

This theorem is a consequence of the observation that \(\overline{\sigma}_i(\xi^n) = \pi_n(e^n + i - 1) \) for \(i > -n \), where \(\pi: P(E) \rightarrow X \) is the projection and \(e \) is the cobordism Euler class of the (dual) canonical line bundle on \(P(E) \). (For \(i \leq -n \), \(\overline{\sigma}_i(\xi) \) is represented by \(P(\xi \oplus e^k) \), \(k = -n - i + 1 \).)

Remark. Conner and Floyd's cobordism Stiefel-Whitney classes \(w_i(\xi) \) (cf. [3]) are defined by the relation \(\Sigma_i (\pi^*w_i)e^{n-i} = 0 \). Thus \(\Sigma_i w_i \overline{\sigma}_{k-i} = 0 \) for \(k > 0 \).

3. **Bordism operations (cf. [5]).** There are dual actions of both \(\theta \) and \(R \) on smooth unoriented bordism theory \(N_* \). If \(M \) is a closed \(n \)-manifold, and \([M] \in N_n(M) \) is the class of the identity map, \(\theta^i[M] \) is represented by \(\Sigma(df) \), where \(f: M^n \rightarrow R^{n+i-1} \) is a generic smooth map. The following result is analogous to Thom's nonembedding theorem using ordinary Steenrod operations.

Corollary 1. If the locally triangulable space \(X \) immerses topologically in \(R^n \), then \(R^i \) is zero on \(N_j(X) \) for \(i + j > n \).

The action of \(R^i \) on the bordism of a point is given by the "quadratic construction"

\[Q_k(M) = M \times M \times S^{k-1}/(x, y, s) \sim (y, x, -s), \quad k = -n - i + 1. \]

Corollary 2. If \(M \) is a closed manifold, \(Q_k(M) \) is cobordant with \(P(TM \oplus e^k) \), \(k \geq 1 \).

In fact, \(M \times M \times D^k/(x, y, s) \sim (y, x, -s) \) minus an open tubular neighborhood of \(\{[x, x, 0]\} \) is a cobordism between them. This generalizes an argument of Conner and Floyd for \(k = 1 \) [2, p. 62].
REMARK. “Steenrod” operations in complex cobordism can be defined in the same way as θ^i, by using complex vector bundles. Furthermore, replacing lines in ξ by k-planes in ξ yields a family of geometric operations $\theta^i_{(k)}$ for each k.

REFERENCES

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912