On the Tamagawa number of quasi-split groups
HTML articles powered by AMS MathViewer
References
- S. G. Gindikin and F. I. Karpelevič, Plancherel measure for symmetric Riemannian spaces of non-positive curvature, Dokl. Akad. Nauk SSSR 145 (1962), 252–255 (Russian). MR 0150239
- R. P. Langlands, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 143–148. MR 0213362
- R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, pp. 18–61. MR 0302614 4. K. F. Lai, On the Tamagawa number of quasi-split groups, Ph. D. Dissertation, Yale, 1974.
- Takashi Ono, Arithmetic of algebraic tori, Ann. of Math. (2) 74 (1961), 101–139. MR 124326, DOI 10.2307/1970307
- Takashi Ono, On Tamagawa numbers, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 122–132. MR 0209290
Additional Information
- Journal: Bull. Amer. Math. Soc. 82 (1976), 300-302
- MSC (1970): Primary 20G30, 20G35; Secondary 12A70, 12A80, 10D20, 32N10, 43A85
- DOI: https://doi.org/10.1090/S0002-9904-1976-14030-X
- MathSciNet review: 0401656