One-sided inequalities for the successive derivatives of a function
HTML articles powered by AMS MathViewer
- by Alfred S. Cavaretta Jr. PDF
- Bull. Amer. Math. Soc. 82 (1976), 303-305
References
- A. S. Cavaretta Jr., An elementary proof of Kolmogorov’s theorem, Amer. Math. Monthly 81 (1974), 480–486. MR 340517, DOI 10.2307/2318585
- Lars Hörmander, A new proof and a generalization of an inequality of Bohr, Math. Scand. 2 (1954), 33–45. MR 64906, DOI 10.7146/math.scand.a-10392
- R. S. Johnson, On monosplines of least deviation, Trans. Amer. Math. Soc. 96 (1960), 458–477. MR 122938, DOI 10.1090/S0002-9947-1960-0122938-4 4. E. Landau, Einige Ungleichungen für zweimal differentierbare Funktionen, Proc. London Math. Soc., 13 (1913), 43-49. 5. I. J. Schoenberg, and A. S. Cavaretta, Jr., Solution of Landau’s problem concerning higher derivatives on the half-line, Math. Research Center Technical Summary Report, No. 1050, University of Wisconsin, Madison, Wis., 1970.
Additional Information
- Journal: Bull. Amer. Math. Soc. 82 (1976), 303-305
- MSC (1970): Primary 41A15; Secondary 46B10
- DOI: https://doi.org/10.1090/S0002-9904-1976-14031-1
- MathSciNet review: 0399384