A Weiner-like condition for quasilinear parabolic equations
HTML articles powered by AMS MathViewer
- by Daniel Deignan PDF
- Bull. Amer. Math. Soc. 82 (1976), 309-310
References
- D. G. Aronson and James Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81–122. MR 244638, DOI 10.1007/BF00281291 2. Daniel J. Deignan, Boundary regularity of weak solutions to a quasilinear parabolic equation, Doctoral Dissertation, Indiana University, 1974.
- Ronald Gariepy and William P. Ziemer, Behavior at the boundary of solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 56 (1974/75), 372–384. MR 355332, DOI 10.1007/BF00248149
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
- Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, DOI 10.7146/math.scand.a-10981
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- Neil S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205–226. MR 226168, DOI 10.1002/cpa.3160210302
Additional Information
- Journal: Bull. Amer. Math. Soc. 82 (1976), 309-310
- MSC (1970): Primary 35K20, 35K55, 35D10; Secondary 31B15, 31B35
- DOI: https://doi.org/10.1090/S0002-9904-1976-14034-7
- MathSciNet review: 0410098