ON STOPPING TIME DIRECTED CONVERGENCE

BY ARYEH Dvoretsky

Communicated by Alexandra Bellow, December 31, 1975

The main purpose of this note is to introduce the notion of S-martingales, a certain modification of that of asymptotic martingales, the main justification of which is III.

1. S-convergence. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability; $(\mathcal{F}_n) \ (n = 1, 2, \ldots)$, a nondecreasing sequence of measurable σ-fields and (X_n) an adapted sequence of extended real-valued r.v. (random variables). (If the \mathcal{F}_n are not mentioned explicitly then any \mathcal{F}_n with the above properties will do; in particular, we may take \mathcal{F}_n to be the σ-field generated by X_1, \ldots, X_n.) Let $T = \{t\}$ be the family of bounded stopping times; i.e. the family of positive, bounded, integer-valued r.v. t with $t^{-1}(n) \in \mathcal{F}_n$ for all n. T is a directed set filtering to the right under the relation $t_1 < t_2$, i.e. $t_1(\omega) \leq t_2(\omega)$ a.s. (almost surely). The r.v. X_t for $t \in T$, is defined by $X_t(\omega) = X_{t(\omega)}(\omega)$.

Definition. Let ϕ map $X_t \ (t \in T)$ into a topological space M. Then $(\phi(S_n))$ is said to be S-convergent—or stopping time directed convergent—(to Y) if the directed set $\phi(X_t)$ is convergent in the topology of M (to Y).

S-convergence implies ordinary convergence, but not vice-versa.

Examples. (1) ϕ the identity mapping, M the space of all extended real valued r.v. topologized by convergence in probability (for extended real valued r.v. this is interpreted as applied to the r.v. obtained through the mapping $x \mapsto x/(1 + |x|)$). We then speak of S-convergence in probability. In sharp distinction from the situation in ordinary convergence, we have

I. **S-convergence in probability is equivalent to a.s. convergence.**

The proof is immediate since there exist $t_1 < \cdots < t_n < \cdots \to \infty$ with $X_{t_n} \overset{a.s.}{\to} \limsup X_{t_n} = \limsup X_n$.

(2) (X_n) is said to be an S-martingale if the expectations (finite or not) EX_t are defined for all $t \in T$ and (EX_n) is S-convergent (to a finite or infinite number). If the limit is a finite number then (X_n) is called an asymptotic martingale.

The argument proving I yields

II. **A uniformly bounded sequence of r.v. (X_n) is a.s. convergent iff it is an asymptotic martingale.**

This result is due to P. A. Meyer [5] where, apparently, stopping time directed convergence was first considered in this context. Asymptotic martingales were introduced by D. G. Austin, G. A. Edgar and A. Ionescu Tulcea [1] and their properties further studied and importance underlined by R. V. Chacon and L. Sucheston [3], G. A. Edgar and L. Sucheston [4] and A. Bellow [2].

2. \(\bar{S} \)-convergence. Let \(C^H \) \((0 \leq H < \infty)\) be defined by: \(C^H(x) = x \) if \(|x| \leq H \) and \(C^H(x) = \pm H \) otherwise, according to the sign of \(x \).

Definition. Let \(\varphi \) map uniformly bounded r.v. into the topological space \(M \). Then \((\varphi(X_n)) \) is said to be \(\bar{S} \)-convergent if \(\varphi(C^HX_n) \) is \(S \)-convergent for every \(H \).

In particular, \((X_n) \) is said to be an \(\bar{S} \)-martingale if \((C^HX_n) \) is an asymptotic martingale for every \(H \). \(\bar{S} \)-convergence in probability is defined as \(S \)-convergence in probability of \((C^HX_n) \) for every finite positive \(H \).

From II we immediately have

III. A sequence of extended real-valued r.v. \((X_n) \) is a.s. convergent iff it is an \(\bar{S} \)-martingale.

It follows (and can also be shown directly) that in defining \(\bar{S} \)-martingales it suffices to consider any unbounded set of \(H \)'s. On the other hand, one can equivalently define \(\bar{S} \)-martingales by the requirement that \((f(X_n)) \) is an asymptotic martingale for every bounded continuous function \(f \) from the extended real line into the real line.

We remark that

IV. The limit function in III is a.s. finite iff

\[
\lim_{H \to \infty} \limsup_{n \to \infty} P[|X_n| > H] = 0
\]

From III we have immediately

V. (a) If \((X_n) \) and \((Y_n) \) are \(\bar{S} \)-martingales, then \((\min(X_n, Y_n)) \) and \((\max(X_n, Y_n)) \) are also \(\bar{S} \)-martingales.

(b) A function \(f \) transforms every \(\bar{S} \)-martingale \((X_n) \) into an \(\bar{S} \)-martingale \((f(X_n)) \) iff it is continuous (on the extended real line).

(c) If \(P' \) is a probability measure defined on \(\mathcal{F} \) then every \(\bar{S} \)-martingale on \((\Omega, \mathcal{F}, P) \) is an \(\bar{S} \)-martingale on \((\Omega, \mathcal{F}, P') \) iff \(P' \) is absolutely continuous relative to \(P \).

3. **Further results.** In [1] (see also [4], [2]) it was proved that an \(L_1 \)-bounded asymptotic martingale is a.s. convergent. This implies

VI. An \(L_1 \)-bounded asymptotic martingale is an \(\bar{S} \)-martingale.

This also follows directly from VII, which extends a result of [1].

VII. If \((X_n) \) is an asymptotic martingale then \((X_n^+) \) and \((X_n^-) \) are \(S \)-martingales.

To see this note that if \(t' \geq t \) and we put \(t'' = t' \) on \([X_t' \geq 0]\) and \(t'' = t \) otherwise, then \(t'' \geq t \). Hence, if \(t \) is such that \(EX_{t'} - EX_t \geq - \varepsilon \) for all \(t' \geq
t, it follows that $EX_t^+ - EX_t^- \geq EX_t^+ - EX_{t'}^+ \geq EX_{t'}^- - EX_t^- > - \varepsilon$.

We remark that the conclusion of VII holds even for S-martingales which are not asymptotic martingales, provided the approach of EX_t to infinity is "semimonotone". In particular it holds for super- and sub-martingales (even not L_1-bounded).

4. Generalizations. There are several possible ways of generalizing the above results. Thus (1) more general directed sets than sequences can be considered (see [4]). (2) Vector valued (and other) r.v. may be considered (see [3], [4], [2]). (3) Probability spaces can be replaced by σ-finite measure spaces. (4) Approximate (see [4]) S- and \tilde{S}-martingales can be studied.

Acknowledgements. My interest in the subject was stimulated by the Colloquium lecture of Alexandra Bellow in Jerusalem mentioned in [2]. I am also indebted to her for illuminating discussions as well as for prompting me to write this note. I would like also to thank G. A. Edgar and L. Sucheston for making [4] available before publication.

References

Hebrew University of Jerusalem, Jerusalem, Israel.