Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Existence and regularity of minimal surfaces on Riemannian manifolds
HTML articles powered by AMS MathViewer

by Jon T. Pitts PDF
Bull. Amer. Math. Soc. 82 (1976), 503-504
References
    [AF] F. J. Almgren, Jr., The theory of varifolds. Mimeographed notes, Princeton (1965)
  • Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
  • H. Blaine Lawson Jr., The global behavior of minimal surfaces in $S^{n}$, Ann. of Math. (2) 92 (1970), 224–237. MR 270279, DOI 10.2307/1970835
  • Marston Morse and C. Tompkins, The existence of minimal surfaces of general critical types, Ann. of Math. (2) 40 (1939), no. 2, 443–472. MR 1503471, DOI 10.2307/1968932
  • [PJ1] J. Pitts, Existence of minimal surfaces on riemannian manifolds I: Almost minimizing varifolds (preprint). [PJ2] J. Pitts, Existence of minimal surfaces on riemannian manifolds II: Regular surfaces in three dimensional manifolds (preprint).
  • Max Shiffman, The Plateau problem for non-relative minima, Ann. of Math. (2) 40 (1939), 834–854. MR 467, DOI 10.2307/1968897
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 49F10, 49F20, 49F22
  • Retrieve articles in all journals with MSC (1970): 49F10, 49F20, 49F22
Additional Information
  • Journal: Bull. Amer. Math. Soc. 82 (1976), 503-504
  • MSC (1970): Primary 49F10, 49F20, 49F22
  • DOI: https://doi.org/10.1090/S0002-9904-1976-14075-X
  • MathSciNet review: 0405219