DEGENERATION AND SPECIALIZATION IN ALGEBRAIC FAMILIES OF VECTOR BUNDLES

BY STEPHEN S. SHATZ

Communicated January 29, 1976

Introduction. If X is a nonsingular d-dimensional projective variety (over an algebraically closed field, k), then by a vector bundle on X we understand a torsion-free, coherent \mathcal{O}_X-module. The classical notion of vector bundle (= locally free \mathcal{O}_X-module) is subsumed in the new definition and agrees with it when X is a curve. The new notion is necessary for the study of moduli problems [G], [L] and because the classical definition is too rigid for higher dimensional varieties [L]. However, given a vector bundle on X, there exists an open subset U of X containing all points of codimension ≤ 1 such that the vector bundle is locally free over U. Chern classes can always be defined for such bundles.

We fix, once and for all, a very ample divisor class, H, on X. Then for any prescheme S over k, the line bundle p^*H on $X \times_k S$ (where $p: X \times_k S \to X$ is the projection) is very ample with respect to S. As usual, set $F(n) = F \otimes H^\otimes n$, then the Hilbert polynomial $p_F(n)$ is defined and, by the Riemann-Roch Theorem, $p_F(n)$ has an expression in terms of Chern classes. Indeed, if we set

$$\deg F = (c_1(F) \cdot H^{d-1}) \quad \text{(intersection no.)},$$

and refer to $\deg F$ as the degree of F (more properly, the H-degree of F), then

$$\frac{p_F(n)}{\rk F} = \delta(X) \frac{n^d}{d!} + \left(\frac{\deg F}{\rk F} - \frac{\deg K}{2} \right) \frac{n^{d-1}}{(d-1)!} + \text{terms of lower degree in } n.$$

The quantities $\widetilde{\mu}(F) = p_F(n)/\rk F$, $\mu(F) = (\deg F)/\rk F$ are fundamental for what we shall do. The former was introduced by Gieseker, the latter by Take-moto [T], and both were inspired by results of Mumford for curves. We shall concentrate on μ; however, everything we do carries over to $\widetilde{\mu}$ suitably interpreted. Call $\mu(F)$ the slope of F.

The bundle F is semistable (resp. stable) if for every proper subbundle, G, $\mu(G) \leq \mu(F)$ (resp. $\mu(G) < \mu(F)$). Our bundle F is unstable if it is not semistable. We regard an unstable bundle as "more degenerate" than a semistable bundle, etc.

AMS (MOS) subject classifications (1970). Primary 14F05, 14D20, 14C05.

1Supported in part, by NSF.
Main results. Let F be a bundle on X, as above. A *Harder-Narasimhan Flag for F* (abbreviated $\text{HNF}(F)$) is a descending chain of subbundles of F,

$$(*) \quad F > F_{t-1} > \cdots > F_1 > (0),$$

having the properties:

(a) each factor bundle F_j/F_{j-1} is semistable;

(b) $\mu(F_{j+1}/F_j) < \mu(F_j/F_{j-1})$, $1 \leq j \leq t - 1$.

(These chains were introduced in [HN] in the case X was a curve, for other purposes.)

Theorem 1. *Every bundle, F, on the d-dimensional, nonsingular, irreducible, projective variety, X, possesses a unique HNF. Any two flags ($*$) satisfying (a) and (b) are identical. Moreover, if F is itself semistable, then F possesses a flag ($*$) in which

(a) each factor bundle is stable, and

(b) $\mu(F_{j+1}/F_j) = \mu(F_j/F_{j-1})$."

Theorem 1 is not difficult to prove if one makes full use of the new definition of vector bundle—it is false otherwise. Given a bundle F, if we plot in the (rk, deg)-plane the points whose coordinates are the ranks and degrees of the bundles occurring in ($*$) for F, we obtain a polygon which we call the *Harder-Narasimhan Polygon for F* ($\text{HNP}(F)$). The slopes of the sides of this polygon are exactly the numbers $\mu(F_1)$, $\mu(F_2/F_1)$, etc. occurring in (b) above. Theorem 1 states that every F possesses a unique HNP, and that $\text{HNP}(F)$ is a convex polygon.

Let X be a nonsingular, irreducible, projective k-variety and let S be a scheme over k. A vector bundle on $X \times_k S$, flat over S, will be called an *algebraic family of vector bundles on X parametrized by S*. If F is a family on X and $s \in S$, we let F_s denote the pull-back of F to the fibre, X_s, of $X \times_k S$ over s. The divisor class H on X induces divisor classes p^*H and H_s on $X \times_k S$ and X_s, respectively, by pull-back. These are very ample as H is, and semistability is measured via these given very ample sheaves.

Theorem 2. *Given X, S, and F on $X \times_k S$, as above, form $\text{HNP}(F_s)$ for each $s \in S$. If $t_0 \in S$ is a specialization of $s \in S$, then $\text{HNP}(F_{t_0})$ lies on or above $\text{HNP}(F_s)$. That is, the Harder-Narasimhan polygon rises under specialization.*

When the moduli scheme for stable bundles exists (i.e., for X a curve [M] or a surface [G]), one can show that $\text{HNP}(F_s)$ is a constructible function of s, and therefore Theorem 2 implies it is upper semicontinuous. Using the upper semi-

2 I want to thank D. G. Quillen for suggesting that my earlier work for curves, X, be formulated as in Theorem 2—thereby inducing me to prove Theorem 2 in general.
continuity, we have obtained a fundamental map from vector bundles on $X \times_k S$ to collections of $r - 1$ algebraic cycles (with nonnegative coefficients) of S, r being the rank of the bundles.

In the simplest case, let Y be a ruled surface with base curve C, and let Y_c denote the generic fibre. Fix a convex polygon, P, with vertices at $(0, 0), (1, d_1), \ldots, (r, d_r)$ (the d's are given integers), and let $\text{Vect}(Y; P)$ denote the set map of rank r bundles on Y whose HNP at the generic fibre Y_c is the given polygon P. Then we obtain a

$$\text{Vect}(Y; P) \xrightarrow{\theta} \prod_{r-1 \text{ factors}} \text{Hilb}(C).$$

It turns out that two bundles on Y have the same image under θ if and only if their pull-backs to each fibre of Y over C are isomorphic, moreover the map θ is surjective. These matters are discussed in $[S_1], [S_2], [S_3]$.

REFERENCES

[S_2] ———, Vector bundles on ruled surfaces (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19174