1. Introduction. In the book, *Theory of games and economic behavior* (1944), J. von Neumann and O. Morgenstern introduced a theory of solutions (or stable sets) for multi-person cooperative games in characteristic function form. A longstanding conjecture has been that the union of all solutions of any particular game is a connected set. (E.g., see [3].) This announcement describes a twelve-person game for which the conjecture fails. The essential definitions for an n-person game will be reviewed briefly before the counterexample is presented. A sketch of the proof is presented here, and the details will appear elsewhere.

2. The model. An n-person game is a pair \((N, v)\) where \(N = \{1, 2, \ldots, n\}\) is the set of players and \(v\) is a characteristic function on \(2^N\), i.e., \(v\) assigns the real number \(v(S)\) to each subset \(S\) of \(N\) and \(v(\emptyset) = 0\). The set of imputations is

\[A = \{ x: \sum_{i \in N} x_i = v(N) \text{ and } x_i \geq v(\{i\}) \text{ for all } i \in N \} \]

where \(x = (x_1, x_2, \ldots, x_n)\) is a vector with real components. For any \(S \subset N\), let \(x(S) = \sum_{i \in S} x_i\). For any \(X \subset A\) and nonempty \(S \subset N\), define \(\text{Dom}_S X\) to be the set of all \(x \in A\) such that there exists a \(y \in X\) with \(y_i > x_i\) for all \(i \in S\) and with \(y(S) \leq v(S)\). Let \(\text{Dom} X = \bigcup_{\emptyset \neq S \subset N} \text{Dom}_S X\). A subset \(V\) of \(A\) is a solution if \(V \cap \text{Dom} V = \emptyset\) and \(V \cup \text{Dom} V = A\). The core of a game is

\[C = \{ x \in A: x(S) \geq v(S) \text{ for all nonempty } S \subset N \}. \]

For any solution \(V\), \(C \subset V\) and \(V \cap \text{Dom} C = \emptyset\).

A characteristic function \(v\) is superadditive if \(v(S \cup T) \geq v(S) + v(T)\) whenever \(S \cap T = \emptyset\). The game below does not have a superadditive \(v\) as is assumed in the classical theory, but it is equivalent solutionwise to a game with a superadditive \(v\). (See [1, p. 68].)

3. Example. The 13 vital coalitions for our example consist of \(N = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}\) and elements from three classes:

\[B = \{ \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\}, \{11, 12\} \}. \]
\[S = \{\{1, 3, 6, 7, 9, 11\}, \{1, 4, 5, 7, 9, 11\}, \{2, 3, 5, 7, 9, 11\}\}, \]
\[T = \{\{1, 3, 8\}, \{1, 5, 10\}, \{3, 5, 12\}\}. \]

And \(v \) is given by:
\[v(N) = 6, \]
\[v(S) = 1 \text{ for all } S \in G \text{ B}, \]
\[v(S) = 4 \text{ for all } S \in G \text{ S}, \]
\[u(S) = 1 \text{ for all } S \in G \text{ T}, \text{ and } u(S) = 0 \text{ for all other } S \in C \text{ N}. \]

For this game \(A = \{x: x(N) = 6 \text{ and } x_i \geq 0 \text{ for all } i \in N\} \). Consider also the six-dimensional hypercube
\[B = \{x \in A: x(S) = 1 \text{ for all } S \in B\}. \]

The core \(C \) is the intersection of \(C(S) \) and \(C(T) \) where
\[C(S) = \{x \in B: x(S) \geq 4 \text{ for all } S \in S\}, \]
\[C(T) = \{x \in B: x(S) \geq 1 \text{ for all } S \in T\}. \]

\(C \) is a proper superset of the convex hull of the six vertices of \(B \) which have \(x_i = 1 \) for \(i \) equal to five of the six odd indices 1, 3, 5, 7, 9 and 11, and \(x_{i+1} = 1 \) when \(i \) is the remaining odd numbered player. Let \(\text{Dom}_G X = \bigcup_{S \in B} \text{Dom}_S X \).

Note that \(\text{Dom}_G C \supset A - B \), and hence any solution \(V \) for our game is a subset of \(B \).

4. Outline of proof. First, note that any component of an \(x \in B \) has a maximum value of \(x_i = 1 \). Consequently, the following three sets are contained in any solution \(V \), i.e., they are subsets of \(\bigcap V \):
\[E = \{x \in B: x_i = x_j = 1 \text{ for } i \neq j \text{ and } \{i, j\} \subset \{1, 3, 5\}\}, \]
\[F = \{x \in C(T): x_p = 1 \text{ for } p = 7, 9 \text{ or } 11\}, \]
\[P = \{(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)\}. \]

Next, we can show that \(\bigcup V \) must be a disconnected set. Let \(G = \{x \in B: x(\{7, 9, 11\}) \leq 1\}, \)
\[G^0 = \{x \in B: x(\{7, 9, 11\}) < 1\}, \text{ and } P' = \{x \in G: x_2 = x_4 = x_6 = 1\}. \]

Throughout this section the indices \(i, j \) and \(k \) represent some ordering of the distinct indices 1, 3 and 5. The subset \(H \) of \(E \) consisting of the three triangular regions
\[H_i = \{x \in G: x_{i+1} = x_j = x_k = 1; x_7 + x_9 + x_{11} = 1\} \]
is in \(\bigcap V \) and \(\text{Dom}_S N \supset G^0 - (E \cup P') \). The subset \(J \) of \(F \) consisting of the three triangular regions
\[J_1 = \{x \in F: x_1 = x_7 = x_9 = 1, x_3 + x_5 + x_{12} = 1\}, \]
\[J_3 = \{x \in F: x_3 = x_7 = x_{11} = 1, x_1 + x_5 + x_{10} = 1\}, \]
\[J_5 = \{x \in F: x_5 = x_9 = x_{11} = 1, x_1 + x_3 + x_8 = 1\} \]
is also in \(\bigcap V \) and \(\text{Dom}_S J \supset B - C(T) \supset P' - P \). So any \(x \in \bigcup V - P \) either has \(x \in E \) or \(x \in B - G^0 \), i.e., \(x_i = x_j = 1 \) or \(x(\{7, 9, 11\}) \geq 1 \). Such \(x \) are clearly disconnected from the singleton \(P \subset \bigcap V \).

Finally, it is necessary to demonstrate that this game does possess at least one solution. \(V' = C \cup E \cup F \cup P \) is in any solution \(V \), and \(V' \) can be enlarged to a solution in two steps. First, include the set of imputations \(L \) in \(C(T) - \)
which is simultaneously maximal with respect to all three of the relations “Dom_S” for $S \in S$. Clearly $L \subseteq \bigcap V$. Next, pick a particular $S^i = \{i + 1, i, k, 7, 9, 11\} \in S$ and then add in those elements L^i in $C(T) - (V' \cup L \cup \text{Dom}(V' \cup L))$ which are maximal with respect to the relation “Dom_S^i” and are at the same time symmetrical in the sense that $x_j = x_k$. It requires some detail to describe the sets L and L^i explicitly, and to verify that the resulting sets $V^i = V' \cup L \cup L^i$ are solutions for our example. These will appear elsewhere.

5. **Remarks.** At one time it was apparently believed that proving the union of all solutions connected could be a major step in showing that every game has a solution. It is now known [2] that a solution need not exist for every game. On the other hand, it is possible that results on disconnecting V' might be useful in the resolution of important open questions about whether solutions always exist for games with full-dimensional cores, with empty cores, or which are constant-sum.

REFERENCES

SCHOOL OF OPERATIONS RESEARCH AND CENTER FOR APPLIED MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853