Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1566896
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Hui-Hsiung Kuo
Title: Gaussian measures in Banach spaces
Additional book information: Lecture Notes in Math., no. 463, Springer-Verlag, Berlin, Heidelberg, New York, 1975, vi + 224 pp., $9.90.

References [Enhancements On Off] (What's this?)

  • R. M. Dudley, Jacob Feldman, and L. Le Cam, On seminorms and probabilities, and abstract Wiener spaces, Ann. of Math. (2) 93 (1971), 390–408. MR 279272, DOI 10.2307/1970780
  • Leonard Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 31–42. MR 0212152
  • Naresh C. Jain and Michael B. Marcus, Integrability of infinite sums of independent vector-valued random variables, Trans. Amer. Math. Soc. 212 (1975), 1–36. MR 385995, DOI 10.1090/S0002-9947-1975-0385995-7
  • G. Kallianpur, Abstract Wiener processes and their reproducing kernel Hilbert spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 113–123. MR 281242, DOI 10.1007/BF00538863
  • J. Kuelbs, Gaussian measures on a Banach space, J. Functional Analysis 5 (1970), 354–367. MR 0260010, DOI 10.1016/0022-1236(70)90014-5
  • I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106–134. MR 76317, DOI 10.1090/S0002-9947-1956-0076317-8
  • I. E. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12–41. MR 102759, DOI 10.1090/S0002-9947-1958-0102759-X

  • Review Information:

    Reviewer: Michael B. Marcus
    Journal: Bull. Amer. Math. Soc. 82 (1976), 695-700
    DOI: https://doi.org/10.1090/S0002-9904-1976-14114-6