A characterization of Osterwalder-Schrader path spaces by the associated semigroup
Author:
Abel Klein
Journal:
Bull. Amer. Math. Soc. 82 (1976), 762-764
MSC (1970):
Primary 60J99, 81A17, 81A18; Secondary 47D05, 60G20
DOI:
https://doi.org/10.1090/S0002-9904-1976-14155-9
MathSciNet review:
0406249
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Abel Klein, When do Euclidean fields exist?, Lett. Math. Phys. 1 (1975/76), no. 2, 131โ133. MR 426698, DOI https://doi.org/10.1007/BF00398375
- Abel Klein, The semigroup characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Functional Analysis 27 (1978), no. 3, 277โ291. MR 0496172, DOI https://doi.org/10.1016/0022-1236%2878%2990009-5
- Abel Klein and Lawrence J. Landau, Singular perturbations of positivity preserving semigroups via path space techniques, J. Functional Analysis 20 (1975), no. 1, 44โ82. MR 0381580, DOI https://doi.org/10.1016/0022-1236%2875%2990053-1 4. K. Osterwalder and R. Schrader, Axioms for Euclidean Greenโs functions. I, II, Comm. Math. Phys. 31 (1973), 83-112; ibid. 42 (1975), 281-305.[Note]
- Barry Simon, Positivity of the Hamiltonian semigroup and the construction of Euclidean region fields, Helv. Phys. Acta 46 (1973/74), 686โ696. MR 381541
- Barry Simon, The $P(\phi )_{2}$ Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. MR 0489552
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 60J99, 81A17, 81A18, 47D05, 60G20
Retrieve articles in all journals with MSC (1970): 60J99, 81A17, 81A18, 47D05, 60G20