A characterization of Osterwalder-Schrader path spaces by the associated semigroup
HTML articles powered by AMS MathViewer
- by Abel Klein PDF
- Bull. Amer. Math. Soc. 82 (1976), 762-764
References
- Abel Klein, When do Euclidean fields exist?, Lett. Math. Phys. 1 (1975/76), no.Β 2, 131β133. MR 426698, DOI 10.1007/BF00398375
- Abel Klein, The semigroup characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Functional Analysis 27 (1978), no.Β 3, 277β291. MR 0496172, DOI 10.1016/0022-1236(78)90009-5
- Abel Klein and Lawrence J. Landau, Singular perturbations of positivity preserving semigroups via path space techniques, J. Functional Analysis 20 (1975), no.Β 1, 44β82. MR 0381580, DOI 10.1016/0022-1236(75)90053-1 4. K. Osterwalder and R. Schrader, Axioms for Euclidean Greenβs functions. I, II, Comm. Math. Phys. 31 (1973), 83-112; ibid. 42 (1975), 281-305.[Note]
- Barry Simon, Positivity of the Hamiltonian semigroup and the construction of Euclidean region fields, Helv. Phys. Acta 46 (1973/74), 686β696. MR 381541
- Barry Simon, The $P(\phi )_{2}$ Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1974. MR 0489552, DOI 10.1007/BF01645738
Additional Information
- Journal: Bull. Amer. Math. Soc. 82 (1976), 762-764
- MSC (1970): Primary 60J99, 81A17, 81A18; Secondary 47D05, 60G20
- DOI: https://doi.org/10.1090/S0002-9904-1976-14155-9
- MathSciNet review: 0406249