Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1566911
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: H. H. Halberstam and H.-E. Richert
Title: Sieve methods
Additional book information: Academic Press, London, 1974, xiii + 364 pp., $26.00.

References [Enhancements On Off] (What's this?)

  • Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque, No. 18, Société Mathématique de France, Paris, 1974 (French). Avec une sommaire en anglais. MR 0371840
  • Enrico Bombieri, On twin almost primes, Acta Arith. 28 (1975/76), no. 2, 177–193. MR 396435, DOI 10.4064/aa-28-2-177-193
  • Enrico Bombieri, The asymptotic sieve, Rend. Accad. Naz. XL (5) 1(2) (1975/76), 243–269 (1977) (English, with Italian summary). MR 491570
  • Jing Run Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157–176. MR 434997
  • P. X. Gallagher, A larger sieve, Acta Arith. 18 (1971), 77–81. MR 291120, DOI 10.4064/aa-18-1-77-81
  • H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
  • C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge Tracts in Mathematics, No. 70, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0404173
  • H. Iwaniec, On the error term in the linear sieve, Acta Arith. 19 (1971), 1–30. MR 296043, DOI 10.4064/aa-19-1-1-30
  • H. Iwaniec, The half dimensional sieve, Acta Arith. 29 (1976), no. 1, 69–95. MR 412134, DOI 10.4064/aa-29-1-69-95
  • H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119–134. MR 374060, DOI 10.1112/S0025579300004708
  • 11.
    J. W. Porter, An improvement of the upper and lower bound functions of Ankeny and Onishi, Acta Arith. (to appear).
  • P. M. Ross, On Chen’s theorem that each large even number has the form $p_{1}+p_{2}$ or $p_{1}+p_{2}p_{3}$, J. London Math. Soc. (2) 10 (1975), no. 4, 500–506. MR 389816, DOI 10.1112/jlms/s2-10.4.500
  • Atle Selberg, Sieve methods, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 311–351. MR 0567686
  • Atle Selberg, Remarks on sieves, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 205–216. MR 0389802
  • R. C. Vaughan, Mean value theorems in prime number theory, J. London Math Soc. (2) 10 (1975), 153–162. MR 0376567, DOI 10.1112/jlms/s2-10.2.153

  • Review Information:

    Reviewer: H. L. Montgomery
    Journal: Bull. Amer. Math. Soc. 82 (1976), 846-853
    DOI: https://doi.org/10.1090/S0002-9904-1976-14180-8