STATISTICAL INDEPENDENCE OF LINEAR CONGRUENTIAL PSEUDO-RANDOM NUMBERS

BY HARALD NIEDERREITER

Communicated by J. T. Schwartz, June 5, 1976

Given a modulus \(m \geq 2 \) and a multiplier \(\lambda \) relatively prime to \(m \), a sequence \(y_0, y_1, \ldots \) of integers in the least residue system mod \(m \) is generated by the recursion \(y_{n+1} \equiv \lambda y_n \pmod{m} \) for \(n = 0, 1, \ldots \), where the initial value \(y_0 \) is relatively prime to \(m \). The sequence \(x_0, x_1, \ldots \) in the interval \([0, 1)\), defined by \(x_n = y_n/m \) for \(n = 0, 1, \ldots \), is then a sequence of pseudo-random numbers generated by the linear congruential method. The sequence is periodic, with the least period \(\tau \) being the exponent to which \(\lambda \) belongs mod \(m \).

For fixed \(s \geq 2 \), consider the \(s \)-tuples \(x_{n,s} = (x_n, x_{n+1}, \ldots, x_{n+s-1}) \), \(n = 0, 1, \ldots \). We determine the empirical distribution of the \(s \)-tuples \(x_0, x_1, \ldots \) and compare it with the uniform distribution on \([0, 1]^s\). The original sequence \(x_0, x_1, \ldots \) of linear congruential pseudo-random numbers passes the serial test (for the given value of \(s \)) if the deviation between these two distributions is small. To measure this deviation, we introduce the quantity

\[
D_N = \sup_J |F_N(J) - V(J)| \quad \text{for } N \geq 1,
\]

where the supremum is extended over all subintervals \(J \) of \([0, 1]^s\), \(F_N(J) \) is \(N^{-1} \) multiplied by the number of terms among \(x_0, x_1, \ldots, x_{N-1} \) falling into \(J \), and \(V(J) \) denotes the volume of \(J \).

For a nonzero lattice point \(h = (h_1, \ldots, h_s) \in \mathbb{Z}^s \), let \(r(h) \) be the absolute value of the product of all nonzero coordinates of \(h \). We set

\[
R(s)(\lambda, m, q) = \sum_{h \equiv 0(q)} \frac{1}{(r(h))^{-1}},
\]

where the sum is extended over all nonzero lattice points \(h \) with \(-m/2 < h_j \leq m/2 \) for \(1 \leq j \leq s \) and \(h \cdot \lambda \equiv h_1 + h_2 \lambda + \cdots + h_s \lambda^{s-1} \equiv 0 \pmod{q} \). For prime moduli \(m \), a somewhat simplified version of our result reads as follows.

Theorem 1. For a prime \(m \) and for a multiplier \(\lambda \) belonging to the exponent \(\tau \pmod{m} \), we have

\[
AMS (MOS) \text{ subject classifications (1970). Primary 65C10, 68A55; Secondary 10G05, 10K05.}
\]

\[1 \] This research was supported by NSF Grant MPS72-05055 A02 at the Institute for Advanced Study, Princeton, New Jersey, in the academic year 1974-1975.

Copyright © 1976, American Mathematical Society
\[D_\tau < \frac{s}{m} + \min \left(\left(1, \frac{\sqrt{m - \tau}}{\tau} \right), \left(\frac{2}{\pi} \log m + \frac{7}{5} \right)^s + \frac{1}{2} R^{(s)}(\lambda, m, m) \right). \]

The second term in the upper bound is nonincreasing as a function of \(\tau \) and so becomes minimal for \(\tau = m - 1 \). Values of \(\lambda \) that minimize \(R^{(s)}(\lambda, m, m) \) are of fundamental importance in the theory of good lattice points in the sense of Korobov and Hlawka (see [2, Chapter 2, §5]). We conclude that a multiplier \(\lambda \) is favorable with regard to the \(s \)-dimensional serial test if \(\lambda = (1, \lambda, \ldots, \lambda^{s-1}) \) is a good lattice point mod \(m \) (or, equivalently, \(\lambda \) is an optimal coefficient mod \(m \)) and \(\lambda \) is a primitive root mod \(m \). It can be shown that there exist primitive roots \(\lambda_0 \) mod \(m \) for which \(R^{(s)}(\lambda_0, m, m) \) is of the order of magnitude \(m^{-1} \log^s m \log \log m \).

For an odd prime power \(m = p^\alpha \), \(p \) prime, \(\alpha \geq 2 \), and for \(|\lambda| > 1 \), let \(\tau(p) \) be the exponent to which \(\lambda \) belongs mod \(p \) and let \(\beta \) be the largest integer such that \(p^\beta \) divides \(\lambda^{\tau(p)} - 1 \).

Theorem 2. For an odd prime power modulus \(m = p^\alpha \) with \(\alpha \geq \beta \), we have

\[D_\tau < \frac{s}{m} + \frac{1}{2} R^{(s)}(\lambda, m, p^{\alpha-\beta}). \]

Theorem 3. If \(m = 2^\alpha \) with \(\alpha \geq 3 \) and \(\lambda \equiv 5 \) (mod 8), then

\[D_\tau < \frac{s}{m} + \frac{1}{2} R^{(s)}(\lambda, m, 2^{\alpha-2}). \]

If \(m = 2^\alpha \) with \(\alpha \geq 4 \) and \(\lambda \equiv 3 \) (mod 8), then

\[D_\tau < \frac{s}{m} + \frac{1}{2} R^{(s)}(\lambda, m, 2^{\alpha-1}) + \frac{1}{2\sqrt{2}} \left(R^{(s)}(\lambda, m, 2^{\alpha-3}) - R^{(s)}(\lambda, m, 2^{\alpha-2}) \right). \]

Since the upper bounds in Theorems 2 and 3 can be estimated in terms of \(R^{(s)}(\lambda, m', m') \) with a suitable \(m' < m \), the remarks following Theorem 1 apply, *mutatis mutandis*, to prime power moduli.

For computational purposes, it is more convenient to replace \(R^{(s)}(\lambda, m, m) \) by the quantity

\[\rho^{(s)}(\lambda, m) = \min_h r(h), \]

where the minimum is extended over the range of lattice points used in the definition of \(R^{(s)}(\lambda, m, m) \).

Theorem 4. For any dimension \(s \geq 2 \) and for any integers \(m \geq 2 \) and \(\lambda \), we have

\[R^{(s)}(\lambda, m, m) < \rho^{-1}(\log 2)^{1-s}((2 \log m)^s + 4(2 \log m)^{s-1}) + \rho^{-1}2^{s+1}(2^{s-2} - 1) \left(\frac{k + s - 2}{s - 1} \right), \]

where \(\rho = \rho^{(s)}(\lambda, m) \) and \(k = \lfloor (\log m)/\log 2 \rfloor \).
There exists an interesting relationship between the two-dimensional serial test and continued fractions. It is based on the fact that \(R^{(2)}(\lambda, m, m) \) can be estimated in terms of the partial quotients in the expansion of \(\lambda/m \) into a finite simple continued fraction. As a consequence, one obtains that \(\lambda \) is favorable with regard to the distribution of pairs whenever these partial quotients are small. This is in accordance with results of Dieter [1] concerning the case \(s = 2 \).

The proofs of Theorems 1, 2 and 3 depend on estimates for exponential sums with linear recurring arguments established in [3]. The case of inhomogeneous linear congruential pseudo-random numbers and the serial test for parts of the period can be treated by similar techniques (see [5]).

Details and proofs, as well as further results, will appear in [4].

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Current address: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801