CORRIGENDUM, VOLUME 82

Abraham Zaks, Half factorial domains pp. 721-723. In §1 the second paragraph is to read:

A Dedekind domain is called special, if whenever a nonprincipal prime P equals (in C(R)) a product of primes $Q_1 \cdot \cdot \cdot Q_t$, it already equals one of the Q's (in C(R)).

In §2 the Proposition 2 is to read:

PROPOSITION 2. Suppose that in the Dedekind domain R, for every prime ideal M there exists a prime ideal N so the MN is a principal ideal. Then R is an HFD iff R is a special Dedekind domain whose class group is a direct sum of a free group and a 2-elementary group.

AMS (MOS) subject classifications (1970). Primary 10A25, 13F99; Secondary 12A45, 13D15.

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 82, Number 6, November 1976

CORRECTION, VOLUME 82

Robert C. Reilly, Applications of the integral of an invariant of the Hessian, pp. 579–580.

Equation (1) should read:

(1)
$$\int_{M} 2S_{2}(f)\Omega = \int_{N} \{ (\Delta z - uK_{1})u - \langle \nabla z, \nabla u \rangle - \Pi(\nabla z, \nabla z) \} \Psi + \int_{M} \operatorname{Ric}(\operatorname{grad} f, \operatorname{grad} f)\Omega.$$

Equation (2) should read

(2)
$$1 \ge \epsilon \left(\frac{2\alpha}{1+\epsilon}\right)^{\frac{1}{2}} \int_{t_1}^T \left(\frac{V(t_1)}{V(t)}\right)^{\epsilon} dt.$$

AMS (MOS) subject classifications (1970). Primary 53C20, 53C40.