REAL ALGEBRAIC VARIETY STRUCTURES ON P. L. MANIFOLDS

BY SELMAN AKBULUT AND HENRY C. KING

Communicated by P. T. Church, October 25, 1976

A closed smooth manifold M^m is said to bound a smooth spine-manifold if M bounds a compact smooth manifold W^{m+1} and if there are a finite number of transversally intersecting closed submanifolds $\{M_i\}$ of W such that $W/\bigcup M_i \approx \text{cone}(M)$, where \approx is piecewise differentiable homeomorphism.

DEFINITION. An A_1-structure on a P. L. manifold M^m is:

$M^m = M^m_0 \cup \bigcup_i \text{cone}(\Sigma_i) \times N_i$ where M^m_0 is a codimension zero smooth submanifold of M, $\partial M^m_0 = \bigcap_i \Sigma_i \times N_i$, N_i's are smooth manifolds and Σ_i's are exotic spheres bounding smooth spine-manifolds.

A_1-structures satisfy regular neighborhood and product structure properties, and there is a classifying space B_{A_1} with inclusions $B_0 \rightarrow B_{A_1} \rightarrow B_{\text{PL}}$ (see [3]). This reduces the existence of A_1-structure on a P. L. manifold to a bundle lifting problem.

THEOREM 1. Any closed A_1-manifold is P. L. homeomorphic to a real algebraic variety.

COROLLARY 1. All P. L. manifolds of dimension less than 10 are P. L. homeomorphic to real algebraic varieties (also see [1]).

THEOREM 2. If a closed smooth manifold bounds a smooth spine-manifold, then it can be represented as a link of an isolated real algebraic singularity. (Converse of this is the Hironaka's resolution theorem.)

COROLLARY 2. Elements of Γ_8, $2\Gamma_{10}$, and all exotic spheres which admit fixed point free smooth involutions are links of real algebraic singularities (also see [2]).

A BRIEF SKETCH OF THE PROOFS. Let M be a closed A_1-manifold. For simplicity assume $M^m = M^m_0 \cup \text{cone}(\Sigma^{m-1})$; then there is W^m with closed submanifolds $\{M_i\}$ such that $W/\bigcup M_i \approx \text{cone}(M)$, and $\partial W = \Sigma$. Let $\tilde{M} = M^m_0 \cup W$.

By proving a relative version of the Nash-Tognoli approximation theorem we can make the smooth manifold \tilde{M} a real algebraic variety V, so that the smooth submanifolds $\{M_i\}$ of \tilde{M} correspond to the subvarieties $\{V_i\}$ of V.

Key words and phrases. Algebraic varieties, exotic spheres.

1 Both authors supported by National Science Foundation grant MPS72-05055 A03.

Copyright © 1977, American Mathematical Society

281
Let $V = f^{-1}(0)$ and $U_i = g^{-1}(0)$, where $f(x)$ and $g(x)$ are polynomials. Let $F(x, t) = f(x)^2 + (tg(x) - 1)^2$, then $\hat{F}(y) = |y|^2 d F(y/|y|^2) = 0$, $y = (x, t)$, $d = \text{degree } F$, gives the equations of

$$V/U_i \approx \tilde{M}/\cup M_i = M_0 \cup (W/\cup M_i) \approx M_0 \cup \text{cone}(\Sigma) = M.$$

This sketches the idea of the proofs of Theorem 1 and 2. Corollary 1 and 2 are true because elements of Γ_8, $2\Gamma_{10}$ bound spine manifolds (see [4]); and any exotic sphere Σ with fixed point free smooth involution τ bounds the obvious spine manifold $\Sigma \times I/(x, 0) \sim (\tau(x), 0)$.

REFERENCES