We announce a number of single variable approximation theorems. Our approach is to extend de Branges' basic theory of Hilbert spaces of entire functions [2] to a Banach space setting. The resulting structure is sufficiently rich to provide both new approximation results and a unifying structure for many earlier results on approximation by entire functions which are related to the Bernstein approximation problem, for example, Akutowitz [1], Koosis [3], Levinson and McKean [5], Mergelyan [6], Pitt [7] and Pollard [8].

Let \(C_c \) be the space of continuous complex functions \(m(\lambda) \) on \(R^1 \) with compact support and the supremum norm \(|m| \). \(B \) denotes a fixed Banach function space on \(R^1 \) with (semi) norm \(\|f\| \). We assume that

1. \(C_c \cap B \) is dense in \(B \), and
2. The multiplication operator \((m, f) \rightarrow m(\lambda)f(\lambda) \) is jointly continuous from \(C_c \times B \) into \(B \).

Examples of spaces satisfying (1) and (2) are \(L^p \) spaces, Orlicz spaces, Lorentz spaces \(L_{(p, q)} \) and spaces of continuous functions with weighted supremum norms. Because of condition (2) it follows that for \(f \in B \) and \(e \in B^* \), the linear functional on \(C_c \) given by \(m \rightarrow \langle mf, e \rangle \) is expressible in the form \(\langle mf, e \rangle = \int m(\lambda)d\mu_{f,e} \) where \(\mu_{f,e} \) is a unique finite Radon measure. The discrete spectrum \(\sigma_d(B) \) of \(B \) is the set \(\{\lambda: |\mu_{f,e}(\lambda)| > 0 \text{ for some } f \in B \text{ and } e \in B^* \} \).

Contained in \(B \) we fix a linear space \(H \) of entire functions with closure \(\overline{H} \). We assume for \(\text{Im } z \neq 0 \) and for \(f \) and \(g \) in \(H \) that the function

\[F(\lambda) \equiv (z - \lambda)^{-1} \{f(z)g(\lambda) - g(z)f(\lambda)\} \in H. \]

If \(H \) is closed under the conjugation \(h \rightarrow \overline{h}(z) \) we call \(H \) symmetric. Two basic examples of symmetric \(H \) are the space \(P \) of all polynomials and the space \(F(T) \)

AMS (MOS) subject classifications (1970). Primary 41A30; Secondary 30A64.

Research supported in part by NSF-MCS-74-07313-A02.
of all Fourier transforms \(f(z) = \int f(\exp\{itz\})g(t)\,dt \) where \(g \) is infinitely differentiable and supported on \([-T, T]\). To avoid trivialities we assume

(4) for each \(\lambda \in \sigma_d(B) \) there exists an \(h \in H \) with \(h(\lambda) \neq 0 \).

The statement of our results require the auxiliary norm \(||f||_+ = ||(\lambda - i)^{-1}f(\lambda)|| \) and the evaluation functionals \(\{e_z; z \in \mathbb{C}^1\} \) on \(H \) where \(e_z(f) = f(z) \) together with the norms \(L(z) = ||e_z|| \) and \(L^+(z) = ||e_z||_+ \).

Theorem 1. If \(L^+(\beta) = +\infty \) for some \(\beta \in \mathbb{R}^2^+ \) = \(\{z: \text{Im} z > 0\} \) then

\[(z - \lambda)^{-1}\overline{H} \subseteq \overline{H} \quad \text{for each } z \in \mathbb{R}^2^+.\]

Theorem 2. Let \(H_\beta = \{h \in H: h(\beta) = 0\} \). If \(H \) is symmetric and if \((\beta - \lambda)^{-1}H_\beta \) is dense in \(H \) for some \(\beta \) with \(\text{Im}(\beta) \neq 0 \) then \(\overline{H} = B \) iff \(L^+(\beta) = +\infty \).

Theorem 3. If \(\beta \in \mathbb{R}^2^+ \) and \(0 < L(\beta) < \infty \) then \(L(z) \) is continuous and subharmonic on \(\mathbb{R}^2^+ \). If in addition \(0 < L(\gamma) < \infty \) for some \(\gamma \in \mathbb{R}^2^- \) then \(L(z) \) is continuous and subharmonic on \(\mathbb{C}^1 \).

Under the conditions of Theorem 3, \(\overline{H} \) is a closed subspace of entire functions \(f(z) \) satisfying \(|f(z)| \leq L(z)||f|| \) and (3).

Theorem 4. Assume \(H \) is closed and that \(L(z) \) is finite. Let \(K = B \cap \{f: f(z) \text{ is entire and } f(z)L^{-1}(z) \text{ is bounded on } \mathbb{C}^1\} \). Then \(H \subseteq K \) and the co-dimension of \(H \) in \(K \) satisfies \(\dim(K|H) \leq 1 \).

The case \(K = H \) is generic but \(\dim(K|H) = 1 \) can occur.

Theorem 5. Under the conditions of Theorem 4 there exist functions \(h_+ \) and \(h_- \) in \(H \) for which \(K \) consists of all entire functions \(f \in B \) satisfying

(i) \(f(z)h_+^{-1}(z) \) (resp. \(f(z)h_-^{-1}(z) \)) is analytic and of bounded type on \(\mathbb{R}^2^+ \) (resp. \(\mathbb{R}^2^- \)).

(ii) \(\sup f(\text{iy})L^{-1}(\text{iy}) < \infty, y \in \mathbb{R}^1 \).

These theorems can be refined when \(H = \mathcal{P} \) or \(H = F(T) \). The solutions of the Bernstein problem given in [1], [6], [8] are generalized to the present setting by

Theorem 6. If \(H = \mathcal{P} \) or \(H = F(T) \) then \(\overline{H} = B \) iff either of the equivalent conditions

(i) \(L^+(i) = +\infty \),

(ii) \(\int \log L^+(\lambda)(1 + \lambda^2)^{-1}d\lambda = +\infty \),

is satisfied.

The generalizations of the Paley-Wiener theorem given in [1], [4], [5] also hold in the present case. We set \(\overline{F}(T^+) = \bigcap\{\overline{F}(S): S > T\} \).

Theorem 7. Either \(\overline{F}(T^+) = B \) or \(\overline{F}(T^+) = B \cap E(T) \), where \(E(T) \) is
the space of entire functions of exponential type not greater than T.

When B is a classical sequence space it may happen that both $L(z) < \infty$ and $H = B$. Series expansions for $L(z)$ are possible in this case and results related to classical interpolatory function theory may be obtained (see [7, p. 115]).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22903