Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

General relativity and cosmology
HTML articles powered by AMS MathViewer

by R. K. Sachs and H. Wu PDF
Bull. Amer. Math. Soc. 83 (1977), 1101-1164
References
    1. M. Alonso and E. J. Finn, Fundamental university physics. I, II, Addison-Wesley, New York, 1970.
  • Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
  • Richard L. Bishop and Samuel I. Goldberg, Tensor analysis on manifolds, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1968. MR 0224010
  • B. S. DeWitt (ed.), Black holes/Les astres occlus, Gordon and Breach Science Publishers, New York-London-Paris, 1973. Based on the lectures given at the 23rd session of the Cours de l’École d’Été de Physique Théorique, Les Houches, August 1972. MR 0408678
  • G. F. R. Ellis, Relativistic cosmology, General relativity and cosmology (Proc. Internat. School of Physics “Enrico Fermi”, Italian Phys. Soc., Varenna, 1969) Academic Press, New York, 1971, pp. 104–182. MR 0351371
  • Arthur E. Fischer and Jerrold E. Marsden, Linearization stability of nonlinear partial differential equations, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 219–263. MR 0383456
  • Robert Geroch, Domain of dependence, J. Mathematical Phys. 11 (1970), 437–449. MR 270697, DOI 10.1063/1.1665157
  • R. Geroch, E. H. Kronheimer, and R. Penrose, Ideal points in space-time, Proc. Roy. Soc. London Ser. A 327 (1972), 545–567. MR 316035, DOI 10.1098/rspa.1972.0062
  • S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 0424186, DOI 10.1017/CBO9780511524646
  • Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
  • Noel J. Hicks, Notes on differential geometry, Van Nostrand Mathematical Studies, No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0179691
  • 12. S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, II, Interscience, New York and London, 1963, 1969. MR 27 #2945; 38 #6501.
  • Eugen Merzbacher, Quantum mechanics, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1970. MR 0260284
  • Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973. MR 0418833
  • 15. P. J. E. Peebles, Physical cosmology, Princeton Univ. Press, Princeton, N. J., 1971.
  • Roger Penrose, Techniques of differential topology in relativity, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972. MR 0469146, DOI 10.1137/1.9781611970609
  • 17. R. K. Sachs, Cosmology, Relativity, Astrophysics and Cosmology, Reidel, Holland, 1973, pp. 197-236.
  • Rainer Kurt Sachs and Hung Hsi Wu, General relativity for mathematicians, Graduate Texts in Mathematics, Vol. 48, Springer-Verlag, New York-Heidelberg, 1977. MR 0503498, DOI 10.1007/978-1-4612-9903-5
  • 19. K. S. Thorne, The search for black holes, Scientific American, vol. 231, no. 6, Dec. 1974. 20. S. Weinberg, Gravitation and cosmology, Wiley, New York, 1972. 21. S. Weinberg, Unified theories of elementary particle interaction, Scientific American, vol. 231, no. 1, July 1974.
Similar Articles
Additional Information
  • Journal: Bull. Amer. Math. Soc. 83 (1977), 1101-1164
  • MSC (1970): Primary 53C50, 53-02, 83C99, 83F05, 83-02; Secondary 53C20, 53B30, 83C05, 85-02, 85A40
  • DOI: https://doi.org/10.1090/S0002-9904-1977-14394-2
  • MathSciNet review: 0503499