Equivariant smoothing theory
Author:
R. Lashof
Journal:
Bull. Amer. Math. Soc. 84 (1978), 1-6
MSC (1970):
Primary 57E10, 57E15, 57D10; Secondary 57A30, 57A35, 57A55, 55F35
DOI:
https://doi.org/10.1090/S0002-9904-1978-14396-1
MathSciNet review:
0464252
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. Douglas R. Anderson and W. C. Hsiang, The functors 𝐾₋ᵢ and pseudo-isotopies of polyhedra, Ann. of Math. (2) 105 (1977), no. 2, 201–223. MR 440573, https://doi.org/10.2307/1970997
- 2. G. Anderson, Classification of structures on abstract manifolds, Mass. Inst, of Tech., Cambridge, 1976 (preprint).
- 3. Edward Bierstone, Equivariant Gromov theory, Topology 13 (1974), 327–345. MR 353334, https://doi.org/10.1016/0040-9383(74)90024-X
- 4. Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
- 5. André Haefliger and Valentin Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 75–91 (French). MR 172296
- 6. A. Haefliger and C. T. C. Wall, Piecewise linear bundles in the stable range, Topology 4 (1965), 209–214. MR 184243, https://doi.org/10.1016/0040-9383(65)90007-8
- 7. W.-c. Hsiang and J. L. Shaneson, Fake tori, the annulus conjecture, and the conjectures of Kirby, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687–691. MR 270378, https://doi.org/10.1073/pnas.62.3.687
- 8. Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575–582. MR 242165, https://doi.org/10.2307/1970652
- 9. R. Kirby and L. Siebenmann, Essays on topological manifolds, smoothings and triangulations (to appear).
- 10. J. M. Kister, Microbundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190–199. MR 180986, https://doi.org/10.2307/1970498
- 11. N. H. Kuiper and R. K. Lashof, Microbundles and bundles. I. Elementary theory, Invent. Math. 1 (1966), 1–17. MR 216506, https://doi.org/10.1007/BF01389695
- 12. R. Lashof, The immersion approach to triangulation and smoothing, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 131–164. MR 0317332
- 13. R. Lashof and M. Rothenberg, 𝐺-smoothing theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 211–266. MR 520506
- 14. J. Alexander Lees, Immersions and surgeries of topological manifolds, Bull. Amer. Math. Soc. 75 (1969), 529–534. MR 239602, https://doi.org/10.1090/S0002-9904-1969-12231-7
- 15. J. Milnor, Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 132–138. MR 0161345
- 16. C. T. C. Wall, On homotopy tori and the annulus theorem, Bull. London Math. Soc. 1 (1969), 95–97. MR 242164, https://doi.org/10.1112/blms/1.1.95
- 17. Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150. MR 250324, https://doi.org/10.1016/0040-9383(69)90005-6
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 57E10, 57E15, 57D10, 57A30, 57A35, 57A55, 55F35
Retrieve articles in all journals with MSC (1970): 57E10, 57E15, 57D10, 57A30, 57A35, 57A55, 55F35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1978-14396-1