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educational policies, insist that the next generation has to operate with the 
same prejudices. 

Braun's book has aspects that can please both styles of applied mathema
ticians. The book could perhaps play a role in giving both pure and applied 
mathematics students and other science students an appreciation of both the 
classical and the modern styles of applied mathematics, and so far as this is 
so, the book may make a healthy contribution to the future direction of 
applied mathematic education. 
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Optimization, a theory of necessary conditions, by Lucien W. Neustadt, 
Princeton Univ. Press, Princeton, New Jersey, 1977, xii + 424 pp., $22.50. 

Optimale Steuerung diskreter Système, by W. G. Boltjanski, Akademische 
Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1976, 326 pp. 

The qualitative theory of optimal processes, by R. Gabasov and F. Kirillova, 
Marcel Dekker, Inc., New York, New York, 1976, xlvi + 640 pp., $55.00. 

1. Horreur. "Je me détourne avec effroi et horreur de cette plaie lamentable 
des fonctions qui n'ont pas de dérivée"; so said Hermite in a letter to Stieltjes. 
The reader who shares this aversion to nondifferentiable functions will 
undoubtedly be affronted by the three books in question. But mathematicians 
have become much more tolerant about the functions they will talk to. This 
has been most evident in optimization, where the need to consider differential 
properties of other than smooth functions arises frequently and funda
mentally. In fact, these ill-bred functions are now often brought into the 
discussion from the start and used systematically, rather than being shunned 
whenever possible. The extent to which this is true is a striking feature of 
these three books, all of which were written by well-known researchers in the 
field of optimal control. 

The wedge in this breakthrough was the gradual recognition of the central 
role in optimization of convexity. This first took place in mathematical 
programming, and now the methods of convex analysis are being systemati
cally applied in other areas as well; their use in optimal control is currently 
an active subject for research (see [4]). And convexity implies nondifferentia-
bility-not just because differentiability is unnecessary, but because clinging to 
it is simply not feasible. For example, one of the great successes of convex 
analysis is duality (see [9]) the pairing with an original minimization problem 
of a certain closely related maximization problem. Besides being rich in 
interpretation (e.g. stress vs. reaction, utility vs. price) this concept is at the 
heart of the most successful computational algorithms in mathematical 
programming. Yet even if the original problem of interest is smooth, its dual 
may very well fail to be. 

We shall encounter presently some further examples of fundamental 
nondifferentiability. But before we arrive at what Hermite would think of as 
this sorry pass, let us look back. 
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2. Remembrance of things past. The basic problem in the calculus of 
variations will soon be celebrating its three hundredth birthday, but it 
remains remarkably spry withal. It consists of minimizing a functional of the 
form 

0 ) [bL(t9x(t)9x(t))dt 

where x belongs to some class of functions satisfying given conditions at a 
and b. The three great themes of optimization come quickly to mind: 

(a) existence-does a minimizing x exist? 
(b) necessary conditions-how may we characterize a minimal x, or at least 

limit the number of suspects? 
(c) sufficiency-can we proceed to prove our conviction that a certain 

suspect is indeed optimal? 
The body of classical theory which responds to these points is one of the 

great success stories of mathematics. These questions, in being answered, 
spawned so many concepts that the calculus of variations is, in the words of 
L. C. Young, "a record of the history of mathematical concepts . . . that no 
other branch of mathematics possesses to an equal extent." (By the way, 
Young's book [10] is so quotable and so amusing that one must feel sorry for 
anyone who hasn't read it.) Yet its achievements are far from being a 
collection of dusty relics; even today the calculus of variations plays a central 
role in the mathematics underlying modern theories of the structure of 
matter. Why is it, then, that this subject, so important, so "relevant", is so 
rarely present in the undergraduate curriculum, for which it is ideally suited? 

It was Hubert who led the attack on the first question ("every problem of 
the calculus of variations has a solution... "), followed by Tonelli. 
Weierstrass and Jacobi showed that the third question is linked to imbedded 
families of extremals and the theory of quadratic functionals. But the 
question of necessary conditions has dominated from the very beginning; a 
selection follows. 

For the basic problem, the first (and foremost) of many necessary 
conditions says that any solution x to the problem must satisfy the Euler-
Lagrange equation 

j - t D-L(x, x) = DXL(*> *)• 

With malice aforethought, let us agree to express this in the following way: 
there is a function p(t) such that 

(2) (p(t),p(t)) = DL(x,x). 

The second most important necessary condition bears the name of 
Weierstrass, and it says that for the above/?, for each / in [a, b], 

(3) L(x(t), x{t) + v) - L(x(t)y x(t)) > v •ƒ>(/) Vv. 

Now suppose that L(JC, • ) is convex for each JC, and that the function H 
defined as follows is differentiable: 

(4) H(x,p) = sup[p'V — L(x, v)}. 
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Then it so happens that (2) is equivalent to 

(5) (-p9x) = DH(x9p). 

This latter type of differential equation is of fundamental importance in 
physics; it is called a Hamiltonian system, where H is the Hamiltonian. 
(Classically, H is defined by a local Legendre transform rather than by (4).) 
These functions play a central role in the theories of invariance and conser
vation laws, the Hamilton-Jacobi equation, and in variational principles. L. 
C. Young has said "conceptually, the importance of Hamiltonians compares 
with that of complex numbers"; we shall return to them later. Let us first turn 
the century. 

3. Optimal control. The basic problem becomes considerably more complex 
if pointwise constraints, say 

(6) /(*(')> * ( 0 ) - 0 V / e [*,*], 

are imposed (this would be called a problem of Lagrange). Much of the 
activity in the calculus of variations in this century has been concerned with 
problems such as these, and in particular with finding a rigorous proof of the 
"multiplier rule". The latter is a theorem saying that any x minimizing (1) 
subject to (6) is a stationary point for the integrand 

(7) L(x9x) + \(t)'f(x,x) 

if \(t) is suitably chosen; the analogy with Lagrange multipliers is clear. 
Special cases were analysed and partial results obtained, but a proof that such 
a X(t) exists so that all the necessary conditions for (7) are satisfied (and not 
merely the Euler-Lagrange equation) remained elusive until McShane's 1939 
paper [6]. This remarkable achievement was destined to be overshadowed, 
however. 

In the 1950's, L. S. Pontryagin analysed the following basic optimal control 
problem. Consider any measurable function u(t) taking values in U 
("control"), and the resulting solution x(t) ("trajectory") to the differential 
equation 

(8) i ( / ) =ƒ ( * ( * ) , «(/))• 

Find the control u and corresponding trajectory x which minimize the "cost 
functional" 

fbg(x(t), u{t))dt 

subject to certain constraints on x(a), x(b). 
In order to state Pontryagin's necessary conditions for this problem, let us 

define a function H as follows: 
(9) H(x9p9 u)=p • ƒ(*, u) - g(x9 u). 

The celebrated "maximum principle" [7] then says that if (x, u) are optimal, 
there exists p such that 

(10) (-/»(')>*(')) - D^H(x(t)9p(t)9 «(0). 

( 1 1 ) H{x(t)9p(t)9 u(t))=m*x{p(t)-f(x(t)9 u) - g(x(t)9 «)}. 
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In proving this, Pontryagin et al. used McShane's seminal approach via 
cones of displacements, an idea reused and elaborated upon numerous times 
since (see [5]). 

Is optimal control simply the calculus of variations under another guise? 
Although few would subscribe to such a bald statement, the point has been 
controversial. The reason for this is that technically, the basic optimal control 
problem is "often" equivalent to a calculus of variations problem with 
constraints, and the multiplier rule for the latter problem yields the 
conclusions of the maximum principle. (To see this in the simplest case, take 
U to be the whole space, ƒ(x, u) = u, and compare (10), (11) to (2), (3): they 
are the same; a complete discussion is given in [1].) 

The difference then is largely one of packaging. Yet it is fundamental ("the 
medium is the message"?). The very statement of the optimal control problem 
brings to the fore new and interesting considerations (example: given two 
points, is there a control u such that the solution to (8) joins them?). Its 
development has been freer of the "artificial assumptions of smoothness" 
[10, p. 214] of the calculus of variations (apologies to Hermite). But most 
important is the format's emphasis on available choice (control). This repre
sents a major philosophical shift from the calculus of variations, where the 
underlying "variational principles" are god-given and nature does the 
optimizing, and it accounts for optimal control's widespread and immediate 
use in engineering (and later, in economic modeling). It also leads naturally to 
the consideration of stochastic elements. (Some credit its appeal to its catchy 
name as well, which is something the calculus of variations certainly lacks!) 

Let us forget the maximum principle for the moment and try applying 
Hamiltonian theory to the basic optimal control problem. A good way to 
calculate the Hamiltonian is to put the problem into the same form as the 
basic problem in the calculus of variations and use formula (4) for H. But in 
order to take account of the constraints that now exist, we must permit L to 
attain the value + oo (this bookkeeping device is common in mathematical 
programming). We define 

L{xy x) = inf{ g(x9 u): u E U, x = f(x9 «)}, 

where by the usual convention the infimum over the empty set is + oo. Then 
the optimal control problem becomes that of minimizing the integral of this 
L. We calculate H via (4) and find 

(12) H(x,p) = sup [p • ƒ(*, u) - g(x, w)}. 
UE:U 

This, rather than the H in the maximum principle, is the (long-lost) "true 
Hamiltonian" for the problem [10, p. 230], although few realize it. Why then 
is it not used? Because, in contrast to the classical setting, there is now no 
hope that the function defined by (12) will be differentiable! But having 
agreed to cease discriminating on such grounds, we might ask if it is possible 
to obtain an analogue of the Hamiltonian equation (5) for this problem. In 
fact, this is possible if we use the "generalized gradient" 3/ of a locally 
Lipschitz function ƒ (see [2]). A necessary condition for optimality [3] is the 
existence of a function p such that (— p, x) ŒdH(x9p). This classically-
rooted approach via "Hamiltonian inclusions" turns out to have several 
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advantages over the maximum principle (which can be obtained from it). One 
of these is the possibility of treating other situations, such as when U depends 
on x, or when (8) is replaced by the more general differential inclusion (see 
[3D *(/) e ƒ•(*(/)). 

Although necessary conditions have attracted the most attention, optimal 
control has of course been concerned with the other two main themes as well. 
In existence theory, (and elsewhere), the relaxed controls of J. Warga (closely 
related to the generalized curves of Young) have proved central, and the 
entire question seems well understood. (Interestingly, criteria guaranteeing 
existence can also be given in Hamiltonian terms [8].) However, sufficiency 
theory in optimal control has not yet attained the satisfactory state found in 
the calculus of variations. 

All these topics are traced in detail in the book of Gabasov and Kirillova, 
which is more or less a survey of optimal control. Also awarded chapters are 
the topics of controllability and observability. The former, which is currently 
an active area of research, deals with the feasibility of joining given values of 
the state x via solutions of the controlled system (8). The latter is concerned 
with deducing properties of the state x of the system when only functions of x 
are observable. The authors are best known for their work on computational 
methods in optimal control, and in consequence that subject also occupies an 
important place. The final chapter in particular is concerned with the theory 
of discrete-time systems; that is, the problem in which (8) is replaced by 

x(t) = f(x(t - 1), u{t)\ t = 0, 1 , . . . , n. 

This happens to be the subject of Boltjanski's monograph, which is 
concerned primarily with establishing a discrete analogue of the Pontryagin 
maximum principle. 

Although the content of Gabasov and Kirillova's book is familiar in the 
large, many of the particulars will be of interest to specialists; it also serves as 
a guide to the huge Russian literature. Despite its wide scope, the book does 
not recommend itself as an introduction to the subject; its penchant for 
cumbersome technical detail and its stilted language could well smother a 
nascent enthusiasm. 

In contrast, Boltjanski treats a limited subject (but very thoroughly). He 
obtains the necessary conditions for the discrete-time optimal control prob
lem as a consequence of convex analysis and mathematical programming 
(this is similar in spirit to the approach of Neustadt described later), both of 
which are developed from first principles. Readers will be grateful for the 
opening chapter, which motivates, illustrates and summarizes the rest of the 
book. This reminds one of a similar chapter in the seminal (and still 
interesting) book [7] by Pontryagin et al., which is perhaps not surprising, 
since the author is among the alii. The book is well written and intelligently 
organized, and can be recommended for the reader who would like to learn 
simultaneously something about mathematical programming, convex analysis, 
and optimal control theory. 

4. General theories of necessary conditions. Suppose that X is a Banach 
space, and that ƒ: X -> R is a given function. There are many (very many!) 
definitions of objects that behave like derivatives of/; let us call one such the 
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"a-derivative" and denote it DJ (any resemblance to a term living or dead is 
purely coincidental). One defines an "«-stationary" point x as a point such 
that DJ(x) behaves somehow like zero. Undoubtedly, a theorem exists 
somewhere which says that if ƒ and g are a-differentiable, and if x minimizes ƒ 
subject to g — 0, then there exist XQ and X in an appropriate space such that 
\>ƒ + kg has an «-stationary point at x. Any such theorem is called a 
(Lagrange) multiplier rule, and the proliferation of these (for a in a large 
index set) has given necessary conditions a bad name in some quarters. The 
point is, of course, that too often the a-multiplier rule is a sterile exercise; it 
"extends" well-known results by e, and adds no new possibilities or insights. 
And the a-derivative is never heard from again. 

When then is a multiplier rule worthwhile? There seem to be two raisons 
d'etre: if 

(a) the theory treats a special class of functions, but with widely significant 
and practical results, or 

(b) the theory is so general that it is useful in a great variety of truly 
different problems. 

Examples of (a) are the classic continuously differentiable case, and the 
theory of convex mathematical programming; an example of (b) is the subject 
of the book by the late L. W. Neustadt (the finishing touches were applied by 
H. T. Banks). 

The book begins by developing a general multiplier rule; we shall not 
describe in detail the approach, which was developed largely in conjunction 
with H. Halkin, and which generalizes even the definition of optimality. The 
rest of the book consists in putting this "abstract maximum principle" 
through its paces. One of the features of new fields like optimal control is that 
the important basic problems remain to some extent unidentified, so that new 
variations continue to appear. The great advantage of a unified general 
multiplier rule, is that in obtaining conditions for such problems we are saved 
from starting from scratch each time. Undoubtedly, an approach to a given 
problem handcrafted from first principles can often yield more than the 
wheeling in of general machinery, but the latter can be very useful, as has 
already been demonstrated in the case of Neustadt's theory. The applications 
presented here are to state-constrained optimal control problems (an early 
success of the method), systems governed by functional relations, minimax 
optimization, vector criteria, and discrete problems. The book, which should 
prove interesting to a variety of workers in the field, is further enhanced by 
an excellent bibliography and commentary on the literature of necessary 
conditions in optimal control to about 1973. 
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Problems and theorems in analysis, by G. Pólya and G. Szegö, Die Grundleh-
ren der math. Wissenschaften, Springer-Verlag, Berlin and New York; Vol. 
I, 1972, xix + 389 pp., Vol. II, 1976, xi + 391 pp., $45.10. 

Pólya and Szegö, Aufgaben und Lehrsàtze aus der Analysis was published 
first in 1925 as volumes 19 and 20 of the "yellow-peril" series. See Tamarkin 
[1] for a review. The inexpensive reprint in 1945 (Dover Publications) by 
authority of the U. S. Alien Property Custodian made the work widely known 
in N. America. The four Springer (German) editions through the latest (1970, 
1971) are unchanged from the original except for the correction of minor 
errors. 

The present volumes are a revised and enlarged translation of the 4th 
edition, vol. I translated by Dorothée Aeppli and vol. II by Claude E. 
Billigheimer. 

The work is one of the real classics of this century; it has had much 
influence on teaching, on research in several branches of hard analysis, 
particularly complex function theory, and it has been an essential indispens
able source book for those seriously interested in mathematical problems. 
One can think of few books written more than a half century ago that would 
really be worth translating today. This one certainly was; of course some 
parts are a bit faded and dated, but much is fresh and exciting and will be 
consulted for years to come. The translators (whose work is first-rate), 
authors, and publisher deserve our praise for making Pólya-Szegö available in 
English to the ever widening set of mathematicians and students who no 
longer read German. 

These volumes contain many extraordinary problems and sequences of 
problems, mostly from some time past, well worth attention today and 
tomorrow. Before embarking on my reviewer's responsibility of evaluation 
and criticism, I want to emphasize, regardless of anything I say below, my 
personal enormous respect for the mathematics of Pólya-Szegö. This work 
was written in the early twenties by two young mathematicians of outstanding 
talent, taste, breadth, perception, perseverence, and pedagogical skill. It broke 
new ground in the teaching of mathematics and how to do mathematical 
research. 
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