ON THE THEORY OF Π^1_3 SETS OF REALS

BY A. S. KECHRIS1 AND D. A. MARTIN

Communicated by Solomon Feferman, June 2, 1977

1. An ordinal basis theorem. Assuming that $\forall x \in \omega^\omega (x^# \text{ exists})$, let u_α be the αth uniform indiscernible (see [3] or [2]). A canonical coding system for ordinals $< u_\omega$ can be defined by letting $W_0 = \{w \in \omega^\omega : w = \langle n, x^# \rangle \text{ for some } n \in \omega, x \in \omega^\omega \}$ and for $w = \langle n, x^# \rangle \in W_0$, $|w| = \tau_n^L(x)(u_1, \ldots, u_{k_n})$, where τ_n is the nth term in a recursive enumeration of all terms in the language of $ZF + V = L[^\exists \bar{x}], \bar{x}$ a constant, taking always ordinal values. Call a relation $P(\xi, x)$, where ξ varies over u_ω and x over ω^ω, Π^1_k if $P^*(w, x) \iff w \in W_0 \land P(|w|, x)$ is Π^1_k. An ordinal $\xi < u_\omega$ is called Δ^1_k if it has a Δ^1_k notation i.e. $\exists w \in W_0 (w \in \Delta^1_k \land |w| = \xi)$.

Theorem 1 ($ZF + DC +$ Determinacy (Δ^1_2)). Every nonempty Π^1_3 subset of u_ω contains a Δ^1_3 ordinal.

Corollary 2 ($ZF + DC +$ Determinacy (Δ^1_2)). If Π^1_3 is closed under quantification over ordinals $< u_\omega$ i.e. if $P(\xi, x)$ is Π^1_3 so are $\exists \xi P(\xi, x)$, $\forall \xi P(\xi, x)$.

Corollary 3 ($ZF + DC + AD$). The class of Π^1_3 sets of reals is closed under $< \delta^1_3$ intersections and unions.

Martin [3] has proved the corresponding result for Δ^1_3.

2. A Kleene theory for Π^1_3. Kleene has characterized the Π^1_3 relations as those which are inductive (see [7]) on the structure $<\omega, <\rangle = Q_1$. Let $j_m: u_\omega \rightarrow u_\omega$, $m \geq 1$, be defined by letting

$$j_m(u_i) = \begin{cases} u_i, & \text{if } i < m, \\ u_{i+1}, & \text{if } i \geq m, \end{cases}$$

and then

$$j_m(\tau^L_n(x)(u_1, \ldots, u_{k_n})) = \tau^L_n(x)(j_m(u_1) \ldots j_m(u_{k_n})).$$

Let R be the relation on u_ω coding these embeddings, i.e.

$$R = \{(m, \alpha, \beta) : m \in \omega \land \alpha, \beta < u_\omega \land j_m(\alpha) = \beta\}.$$
Theorem 4. ($\text{ZF} + \text{DC} + \text{Determinacy} (\Delta^1_2)$). A set of reals is Π^1_3 iff it is absolutely inductive on the structure Q_3.

In the second part of the above characterization a relation on reals is viewed as a second order relation on u_ω and absolutely inductive means that only parameters from ω are allowed in the definitions (see [7]).

It should be mentioned here that Q_3 is up to absolute hyperelementary equivalence the same as $\langle u_\omega, <, T^2 \rangle$, where T^2 is the tree (on $\omega \times u_\omega$) coming from the Martin and Solovay [4] analysis of Π^1_2 sets (see [3] for the definition of T^2).

One also obtains the analog for Π^1_3 of the Souslin-Kleene representation of Π^1_1 sets in terms of well-founded trees.

Theorem 5 ($\text{ZF} + \text{DC} + \text{Determinacy} (\Delta^1_2)$). A set of reals P is Π^1_3 iff there is a tree T on $\omega \times u_\omega$ which is recursive in the structure Q_3 and $P(x) \iff T(x)$ is well founded.

For the notation see [2]. The fact that every Π^1_3 set can be so represented is a well-known result of Martin and Solovay [4], the converse being new here.

Let $Q_{\frac{3}{3}} = \langle u_\omega, <, \{u_n\}_{n<\omega} \rangle$. Then we also have the context of full AD, in which case $u_n = r_n$, $\forall n \leq \omega$.

Theorem 6 ($\text{ZF} + \text{DC} + \text{AD}$). A set of reals is Π^1_3 iff it is Π^1_1 on the structure $Q_{\frac{3}{3}}$.

3. Explaining the Q-theory. The results in §2 provide a nice explanation for the Q-theory (see [5], [1]) at level 3, which accounts for the structural differences between Π^1_3 and Π^1_1 sets. For example, a real is Δ^1_3 iff it is absolutely hyperelementary on Q_3 while it is in Q_3 iff it is hyperelementary (i.e. parameters $< u_\omega$ are allowed) on Q_3. Also if y_0 is the first nontrivial Π^1_3 singleton then y_0 is hyperelementary-in-Q_3 equivalent to the complete inductive-in-Q_3 subset of u_ω.

4. Higher level analogs of L. Assuming Projective Determinacy (PD), let T^3 be the tree (on $\omega \times \delta^1_3$) associated with an arbitrary Π^1_3-scale on a complete Π^1_3 set (see [6] and [2]). Let also C_4 be the largest countable Σ^1_4 set. The next result proves a conjecture of Moschovakis and shows that $L[T^3]$ is a correct higher level analog of L for level 4.

Theorem 7 ($\text{ZF} + \text{DC} + \text{Determinacy} (L[\omega^\omega] \cap \text{power} (\omega^\omega))$). For any T^3 as above, $L[T^3] \cap \omega^\omega = C_4$. In particular $L[T^3] \cap \omega^\omega$ is independent of the tree T^3.

Open problem. Is $L[T^3]$ independent of T^3?

Further applications of the methods developed here to the theory of Π^1_3 sets as well as details and proofs of the results announced here will appear elsewhere.
REFERENCES

5. ———, Basis theorems for Π^1_{2k} sets of reals (to appear).

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125

DEPARTMENT OF MATHEMATICS, ROCKEFELLER UNIVERSITY, NEW YORK, NEW YORK 10021

Current address (D. A. Martin): Department of Mathematics, University of California, Los Angeles, California 90024