ON A PROBLEM OF ROTA

BY E. RODNEY CANFIELD

Communicated by J. R. Goldman, August 8, 1977

Let $S(n, k)$ denote the Stirling numbers of the second kind, and let K_n be such that $S(n, K_n) > S(n, k)$ for all k. Rota's problem [3] is to prove or disprove the following:

For all n, the largest possible incomparable collection of partitions of an n-set contains $S(n, K_n)$ partitions.

An “incomparable collection” of partitions is one in which no partition in the collection is a refinement of some other partition in the collection.

DEFINITION. Let $S(n, k)$ denote the collection of all partitions of an n-set into k nonempty blocks. If $C \subseteq S(n, k)$, define $\text{Span}(C)$ by

$$\text{Span}(C) = \{\pi \in S(n, k+1): \pi \text{ is a refinement of some } \pi' \in C\}.$$

THEOREM. For all sufficiently large n, there is a collection $C \subseteq S(n, j)$ such that

(i) $j + 1 = K_n$,
(ii) $|\text{Span}(C)| < |C|$, where $|\ |$ denotes cardinality.

Consequently, $(S(n, j + 1) - \text{Span}(C)) \cup C$ is an incomparable collection with more than $S(n, K_n)$ partitions.

REMARKS. C consists of all $\pi \in S(n, j)$ having exactly l blocks of size $\leq M$ and exactly $j - l$ blocks of size $> M$ and $\leq 2M$, where l and M are appropriately defined.

The proof of the Theorem requires [2] to estimate $|C|$ and $|\text{Span}(C)|$; and also requires [1] to know the approximate value of K_n.

REFERENCES

1. E. Rodney Canfield, On the location of the maximum Stirling number(s) of the second kind, 1977 (preprint).

DEPARTMENT OF STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602

AMS (MOS) subject classifications (1970). Primary 05A17, 05A05; Secondary 05C35, 06A10, 05C99.