Colloquium lectures on geometric measure theory
HTML articles powered by AMS MathViewer
- by Herbert Federer PDF
- Bull. Amer. Math. Soc. 84 (1978), 291-338
References
- William K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417–491. MR 307015, DOI 10.2307/1970868
- William K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math. (2) 101 (1975), 418–446. MR 397520, DOI 10.2307/1970934
- W. K. Allard and F. J. Almgren Jr., The structure of stationary one dimensional varifolds with positive density, Invent. Math. 34 (1976), no. 2, 83–97. MR 425741, DOI 10.1007/BF01425476
- F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199. MR 420406, DOI 10.1090/memo/0165 5. F. J. Almgren, Jr., R. Schoen and L. Simon, Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals, Acta Math, (to appear).
- Frederick J. Almgren Jr. and William P. Thurston, Examples of unknotted curves which bound only surfaces of high genus within their convex hulls, Ann. of Math. (2) 105 (1977), no. 3, 527–538. MR 442833, DOI 10.2307/1970922
- Thomas Bagby and William P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148. MR 344390, DOI 10.1090/S0002-9947-1974-0344390-6
- E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. MR 250205, DOI 10.1007/BF01404309
- E. Bombieri and E. Giusti, Harnack’s inequality for elliptic differential equations on minimal surfaces, Invent. Math. 15 (1972), 24–46. MR 308945, DOI 10.1007/BF01418640 10. K. E. Brakke, The motion of a surface by its mean curvature, Princeton Ph. D. Thesis, 1975.
- John E. Brothers, A characterization of integral currents, Trans. Amer. Math. Soc. 150 (1970), 301–325. MR 266125, DOI 10.1090/S0002-9947-1970-0266125-4
- John E. Brothers, Stokes’ theorem. II, Amer. J. Math. 93 (1971), 479–484. MR 293065, DOI 10.2307/2373388
- John E. Brothers, Existence and structure of tangent cones at the boundary of an area minimizing integral current, Indiana Univ. Math. J. 26 (1977), no. 6, 1027–1044. MR 487727, DOI 10.1512/iumj.1977.26.26083
- John E. Brothers, The structure of solutions to Plateau’s problem in the $n$-sphere, J. Differential Geometry 11 (1976), no. 3, 387–400. MR 435995
- Roy O. Davies, Increasing sequences of sets and Hausdorff measure, Proc. London Math. Soc. (3) 20 (1970), 222–236. MR 260959, DOI 10.1112/plms/s3-20.2.222
- Roy O. Davies and C. A. Rogers, The problem of subsets of finite positive measure, Bull. London Math. Soc. 1 (1969), 47–54. MR 240267, DOI 10.1112/blms/1.1.47
- E. De Giorgi, F. Colombini, and L. C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Scuola Normale Superiore, Pisa, 1972 (Italian). MR 0493669
- Lawrence R. Ernst, A proof that $\ast \ast \&cscrC\ast \ast cscrC^{2}$ and $\ast \ast \&cscrT\ast \ast cscrT^{2}$ are distinct measures, Trans. Amer. Math. Soc. 173 (1972), 501–508. MR 310164, DOI 10.1090/S0002-9947-1972-0310164-3
- Lawrence R. Ernst, A proof that ${\cal H}^{2}$ and ${\cal T}^{2}$ are distinct measures, Trans. Amer. Math. Soc. 191 (1974), 363–372. MR 361007, DOI 10.1090/S0002-9947-1974-0361007-5
- Lawrence R. Ernst, ${\scr T}$ measure of Cartesian product sets, Proc. Amer. Math. Soc. 49 (1975), 199–202. MR 367162, DOI 10.1090/S0002-9939-1975-0367162-1
- Lawrence R. Ernst, $T$ measure of Cartesian product sets. II, Trans. Amer. Math. Soc. 222 (1976), 211–220. MR 422587, DOI 10.1090/S0002-9947-1976-0422587-6
- Lawrence R. Ernst and Gerald Freilich, A Hausdorff measure inequality, Trans. Amer. Math. Soc. 219 (1976), 361–368. MR 419739, DOI 10.1090/S0002-9947-1976-0419739-8
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Herbert Federer, On spherical summation of the Fourier transform of a distribution whose partial derivatives are representable by integration, Ann. of Math. (2) 91 (1970), 136–143. MR 410251, DOI 10.2307/1970603
- Herbert Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767–771. MR 260981, DOI 10.1090/S0002-9904-1970-12542-3
- Herbert Federer, Slices and potentials, Indiana Univ. Math. J. 21 (1971/72), 373–382. MR 297973, DOI 10.1512/iumj.1971.21.21029
- Herbert Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974/75), 351–407. MR 348598, DOI 10.1512/iumj.1974.24.24031
- Herbert Federer, A minimizing property of extremal submanifolds, Arch. Rational Mech. Anal. 59 (1975), no. 3, 207–217. MR 388226, DOI 10.1007/BF00251600
- Herbert Federer and William P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p$-th power summable, Indiana Univ. Math. J. 22 (1972/73), 139–158. MR 435361, DOI 10.1512/iumj.1972.22.22013 30. A. T. Fomenko, Minimal compacta in Riemannian manifolds and Reifenberg’s conjecture, Math. USSR Izv. 6 (1972), 1037-1066.
- A. T. Fomenko, The multidimensional Plateau problem in Riemannian manifolds, Mat. Sb. (N.S.) 89(131) (1972), 475–519, 534 (Russian). MR 0348599, DOI 10.1017/s0025557200178672
- Ronald Gariepy, Current valued measures and Geöcze area, Trans. Amer. Math. Soc. 166 (1972), 133–146. MR 293066, DOI 10.1090/S0002-9947-1972-0293066-0
- Ronald Gariepy, Geöcze area and a convergence property, Proc. Amer. Math. Soc. 34 (1972), 469–474. MR 297974, DOI 10.1090/S0002-9939-1972-0297974-1
- Ronald Gariepy, Geometric properties of Sobolev mappings, Pacific J. Math. 47 (1973), 427–433. MR 338884, DOI 10.2140/pjm.1973.47.427
- Enrico Giusti, Superfici cartesiane di area minima, Rend. Sem. Mat. Fis. Milano 40 (1970), 135–153 (Italian, with English summary). MR 291963, DOI 10.1007/BF02923230
- Casper Goffman, An example in surface area, J. Math. Mech. 19 (1969/1970), 321–326. MR 0248331, DOI 10.1512/iumj.1970.19.19031
- Casper Goffman and William P. Ziemer, Higher dimensional mappings for which the area formula holds, Ann. of Math. (2) 92 (1970), 482–488. MR 271283, DOI 10.2307/1970629
- Robert M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta Math. 129 (1972), 75–136. MR 315561, DOI 10.1007/BF02392214
- Robert M. Hardt, Slicing and intersection theory for chains modulo $\nu$ associated with real analytic varieties, Trans. Amer. Math. Soc. 183 (1973), 327–340. MR 338430, DOI 10.1090/S0002-9947-1973-0338430-7
- Robert M. Hardt, Homology theory for real analytic and semianalytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 1, 107–148. MR 382699
- Robert M. Hardt, Topological properties of subanalytic sets, Trans. Amer. Math. Soc. 211 (1975), 57–70. MR 379882, DOI 10.1090/S0002-9947-1975-0379882-8
- Robert M. Hardt, Uniqueness of nonparametric area minimizing currents, Indiana Univ. Math. J. 26 (1977), no. 1, 65–71. MR 451154, DOI 10.1512/iumj.1977.26.26004
- Robert M. Hardt, On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand, Comm. Partial Differential Equations 2 (1977), no. 12, 1163–1232. MR 513682, DOI 10.1080/03605307708820058
- Reese Harvey, Holomorphic chains and their boundaries, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 309–382. MR 0447619
- R. Harvey and B. Lawson, Extending minimal varieties, Invent. Math. 28 (1975), 209–226. MR 370319, DOI 10.1007/BF01425557
- F. Reese Harvey and H. Blaine Lawson Jr., On boundaries of complex analytic varieties. I, Ann. of Math. (2) 102 (1975), no. 2, 223–290. MR 425173, DOI 10.2307/1971032
- Reese Harvey and Bernard Shiffman, A characterization of holomorphic chains, Ann. of Math. (2) 99 (1974), 553–587. MR 355095, DOI 10.2307/1971062 48. S. Kar, The $(\varphi , 1)$ rectifiable subsets of Euclidean space, Indiana Ph.D. Thesis, 1975.
- R. Kaufman and P. Mattila, Hausdorff dimension and exceptional sets of linear transformations, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 387–392. MR 0407248, DOI 10.5186/aasfm.1975.0105
- James R. King, The currents defined by analytic varieties, Acta Math. 127 (1971), no. 3-4, 185–220. MR 393550, DOI 10.1007/BF02392053
- Robert V. Kohn, An example concerning approximate differentiation, Indiana Univ. Math. J. 26 (1977), no. 2, 393–397. MR 427559, DOI 10.1512/iumj.1977.26.26030
- H. Blaine Lawson Jr., The equivariant Plateau problem and interior regularity, Trans. Amer. Math. Soc. 173 (1972), 231–249. MR 308905, DOI 10.1090/S0002-9947-1972-0308905-4
- H. Blaine Lawson Jr., The stable homology of a flat torus, Math. Scand. 36 (1975), 49–73. MR 460708, DOI 10.7146/math.scand.a-11562 54. H. B. Lawson, Jr. and R. Osserman, Nonexistence, nonuniqueness and irregularity of solutions to the minimal surface system, Acta Math, (to appear).
- H. Blaine Lawson Jr. and James Simons, On stable currents and their application to global problems in real and complex geometry, Ann. of Math. (2) 98 (1973), 427–450. MR 324529, DOI 10.2307/1970913
- Pertti Mattila, Hausdorff $m$ regular and rectifiable sets in $n$-space, Trans. Amer. Math. Soc. 205 (1975), 263–274. MR 357741, DOI 10.1090/S0002-9947-1975-0357741-4
- Pertti Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 227–244. MR 0409774, DOI 10.5186/aasfm.1975.0110
- Norman G. Meyers and William P. Ziemer, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. Math. 99 (1977), no. 6, 1345–1360. MR 507433, DOI 10.2307/2374028
- M. Miranda, Un principio di massimo forte per le frontiere minimali e una sua applicazione alla risoluzione del problema al contorno per l’equazione delle superfici di area minima, Rend. Sem. Mat. Univ. Padova 45 (1971), 355–366 (Italian). MR 303390
- Frank Morgan, A smooth curve in $R^{4}$ bounding a continuum of area minimizing surfaces, Duke Math. J. 43 (1976), no. 4, 867–870. MR 415475 61. F. Morgan, Almost every smooth curve in R3 bounds a unique area minimizing surface, Princeton Ph.D. Thesis, 1977.
- Johannes C. C. Nitsche, Vorlesungen über Minimalflächen, Die Grundlehren der mathematischen Wissenschaften, Band 199, Springer-Verlag, Berlin-New York, 1975 (German). MR 0448224
- Robert Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092–1120. MR 276875, DOI 10.1090/S0002-9904-1969-12357-8
- Harold Parks, Some new constructions and estimates in the problem of least area, Trans. Amer. Math. Soc. 248 (1979), no. 2, 311–346. MR 522264, DOI 10.1090/S0002-9947-1979-0522264-X
- Harold R. Parks, A method for computing non-parametric area minimizing surfaces over $n$-dimensional domains, together with a priori error estimates, Indiana Univ. Math. J. 26 (1977), no. 4, 625–643. MR 487723, DOI 10.1512/iumj.1977.26.26050
- Harold Parks, Explicit determination of area minimizing hypersurfacess, Duke Math. J. 44 (1977), no. 3, 519–534. MR 458304
- Sandra O. Paur, Stokes’ theorem for integral currents modulo $\nu$, Amer. J. Math. 99 (1977), no. 2, 379–388. MR 482509, DOI 10.2307/2373825 68. S. O. Paur, An estimate of the density at the boundary of an integral current modulo v,
- Jon T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Bull. Amer. Math. Soc. 82 (1976), no. 3, 503–504. MR 405219, DOI 10.1090/S0002-9904-1976-14075-X
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Ettore Santi, Sul problema al contorno per l’equazione delle superfici di area minima su domini limitati qualunque, Ann. Univ. Ferrara Sez. VII (N.S.) 17 (1972), 13–26 (Italian, with English summary). MR 301337 72. V. Scheffer, Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities, Princeton Ph.D. Thesis, 1974.
- Bernard Shiffman, Applications of geometric measure theory to value distribution theory for meromorphic maps, Value distribution theory (Proc. Tulane Univ. Program, Tulane Univ., New Orleans, La., 1972-1973) Dekker, New York, 1974, pp. 63–95. MR 0377122
- Leon Simon, Boundary regularity for solutions of the non-parametric least area problem, Ann. of Math. (2) 103 (1976), no. 3, 429–455. MR 638358, DOI 10.2307/1970947 75. K. Steffen, Isoperimetrische Ungleichungen und das Plateausche Problem, Sonderforschungsbereich 40 (1973), Theoretische Mathematik, Universität Bonn.
- Jean E. Taylor, Regularity of the singular sets of two-dimensional area-minimizing flat chains modulo $3$ in $R^{3}$, Invent. Math. 22 (1973), 119–159. MR 333903, DOI 10.1007/BF01392299
- Jean E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), no. 3, 489–539. MR 428181, DOI 10.2307/1970949
- Jean E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), no. 3, 489–539. MR 428181, DOI 10.2307/1970949
- Jean E. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm. Partial Differential Equations 2 (1977), no. 4, 323–357. MR 487721, DOI 10.1080/03605307708820033 80. A. I. Volpert, The space BV and quasilinear equations, Math. USSR Sbornik 2 (1967), 225-267.
- William P. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 (1969), 171–178. MR 237725
- William P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117–128. MR 268401
- William P. Ziemer, Slices of maps and Lebesgue area, Trans. Amer. Math. Soc. 164 (1972), 139–151. MR 291415, DOI 10.1090/S0002-9947-1972-0291415-0
- William P. Ziemer, Some remarks on harmonic measure in space, Pacific J. Math. 55 (1974), 629–637. MR 427657, DOI 10.2140/pjm.1974.55.629
Similar Articles
- Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 49F20, 49F22, 26A45, 26A57, 26A63, 26A66, 28A75, 42A92, 49F05, 49F10, 49F25, 53C65
- Retrieve articles in all journals with MSC (1970): 49F20, 49F22, 26A45, 26A57, 26A63, 26A66, 28A75, 42A92, 49F05, 49F10, 49F25, 53C65
Additional Information
- Journal: Bull. Amer. Math. Soc. 84 (1978), 291-338
- MSC (1970): Primary 49F20, 49F22; Secondary 26A45, 26A57, 26A63, 26A66, 28A75, 42A92, 49F05, 49F10, 49F25, 53C65
- DOI: https://doi.org/10.1090/S0002-9904-1978-14462-0
- MathSciNet review: 0467473