Embeddings of $\left ( {n - 1} \right )$-spheres in Euclidean $n$-space
HTML articles powered by AMS MathViewer
- by Robert J. Daverman PDF
- Bull. Amer. Math. Soc. 84 (1978), 377-405
References
-
[A1] J. W. Alexander, An example of a simply connected space bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U. S. A. 10 (1924), 8-10.
[A2] J. W. Alexander, Remarks on a point set constructed by Antoine, Proc. Nat. Acad. Sci. U. S. A. 10 (1924), 10-12.
- F. D. Ancel and J. W. Cannon, The locally flat approximation of cell-like embedding relations, Ann. of Math. (2) 109 (1979), no. 1, 61–86. MR 519353, DOI 10.2307/1971267
- Fredric D. Ancel and D. R. McMillan Jr., Complementary $1-\textrm {ULC}$ properties for $3$-spheres in $4$-space, Illinois J. Math. 20 (1976), no. 4, 669–680. MR 410752
- J. J. Andrews and M. L. Curtis, $n$-space modulo an arc, Ann. of Math. (2) 75 (1962), 1–7. MR 139153, DOI 10.2307/1970414 [A6] L. Antoine, Sur l’homéomorphie de deux figures et de leur voisinages, J. Math. Pures Appl. 86 (1921), 221-325.
- Steve Armentrout, Monotone decompositions of $E^{3}$, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 1–25. MR 0222865
- Steve Armentrout, A survey of results on decompositions, Proceedings of the University of Oklahoma Topology Conference (Univ. Oklahoma, Norman, Okla., 1972) Univ. of Oklahoma, Norman, Okla., 1972, pp. 1–12. MR 0365576 [B1] Fred O. Benson, Flattening criteria for high dimensional (n - 1)-submanifolds, Ph.D. Thesis, Univ. of Utah, 1974.
- Fred Benson, A short proof of a Kirby flattening theorem, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 6–8. MR 0397741
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465–483. MR 87090
- R. H. Bing, Conditions under which a surface in $E^{3}$ is tame, Fund. Math. 47 (1959), 105–139. MR 107229, DOI 10.4064/fm-47-1-105-139
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294–305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Each disk in $E^{3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583–590. MR 146811, DOI 10.2307/2372864
- R. H. Bing, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145–192. MR 150744, DOI 10.2307/1970203
- R. H. Bing, Retractions onto spheres, Amer. Math. Monthly 71 (1964), 481–484. MR 162236, DOI 10.2307/2312583
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33–45. MR 160194
- R. H. Bing, Radial engulfing, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 1–18. MR 0238284
- William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276–297. MR 40659, DOI 10.2307/1969543
- William S. Boyd Jr., Repairing embeddings of $3$-cells with monotone maps of $E^{3}$, Trans. Amer. Math. Soc. 161 (1971), 123–144. MR 282352, DOI 10.1090/S0002-9947-1971-0282352-5 [B13] L. E. J. Brouwer, Beweis des Jordanschen Satzes für den n-dimensionalen Räum, Math. Ann. 71 (1912), 314-319.
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331–341. MR 133812, DOI 10.2307/1970177
- Morton Brown, Wild cells and spheres in higher dimensions, Michigan Math. J. 14 (1967), 219–224. MR 221481
- J. L. Bryant, Concerning uncountable families of $n$-cells in $E^{n}$, Michigan Math. J. 15 (1968), 477–479. MR 238285, DOI 10.1307/mmj/1029000104
- J. L. Bryant, An example of a wild $(n-1)$-sphere in $S^{n}$ in which each $2$-complex is tame, Proc. Amer. Math. Soc. 36 (1972), 283–288. MR 319202, DOI 10.1090/S0002-9939-1972-0319202-0 [B19] J. L. Bryant, R. D. Edwards, and C. L. Seebeck III, Approximating codimension one submanifolds with 1-LC embeddings, Notices Amer. Math. Soc. 20 (1973), A-28. Abstract #73T-G17.
- J. L. Bryant and R. C. Lacher, Embeddings with mapping cylinder neighborhoods, Topology 14 (1975), 191–201. MR 394680, DOI 10.1016/0040-9383(75)90027-0
- J. L. Bryant, R. C. Lacher, and B. J. Smith, Free spheres with mapping cylinder neighborhoods, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 58–65. MR 0391105
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings of polyhedra, Quart. J. Math. Oxford Ser. (2) 19 (1968), 257–274. MR 234434, DOI 10.1093/qmath/19.1.257
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265–272. MR 290376, DOI 10.1093/qmath/21.3.265
- C. E. Burgess, Characterizations of tame surfaces in $E^{3}$, Trans. Amer. Math. Soc. 114 (1965), 80–97. MR 176456, DOI 10.1090/S0002-9947-1965-0176456-2
- C. E. Burgess, Criteria for a $2$-sphere in $S^{3}$ to be tame modulo two points, Michigan Math. J. 14 (1967), 321–330. MR 216481, DOI 10.1307/mmj/1028999781
- C. E. Burgess, Embeddings of surfaces in Euclidean three-space, Bull. Amer. Math. Soc. 81 (1975), no. 5, 795–818. MR 375319, DOI 10.1090/S0002-9904-1975-13834-1
- C. E. Burgess and J. W. Cannon, Embeddings of surfaces in $E^{3}$, Rocky Mountain J. Math. 1 (1971), no. 2, 259–344. MR 278277, DOI 10.1216/RMJ-1971-1-2-259
- J. W. Cannon, Characterization of taming sets on $2$-spheres, Trans. Amer. Math. Soc. 147 (1970), 289–299. MR 257996, DOI 10.1090/S0002-9947-1970-0257996-6
- James W. Cannon, $^{\ast }$-taming sets for crumpled cubes. I. Basic properties, Trans. Amer. Math. Soc. 161 (1971), 429–440. MR 282353, DOI 10.1090/S0002-9947-1971-0282353-7
- J. W. Cannon, Characterization of tame subsets of $2$-spheres in $E^{3}$, Amer. J. Math. 94 (1972), 173–188. MR 296921, DOI 10.2307/2373599
- J. W. Cannon, $\textrm {ULC}$ properties in neighbourhoods of embedded surfaces and curves in $E^{3}$, Canadian J. Math. 25 (1973), 31–73. MR 314037, DOI 10.4153/CJM-1973-004-1
- J. W. Cannon, A positional characterization of the $(n-1)$-dimensional Sierpiński curve in $S^{n}(n\not =4)$, Fund. Math. 79 (1973), no. 2, 107–112. MR 319203, DOI 10.4064/fm-79-2-107-112
- J. W. Cannon, Taming cell-like embedding relations, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 66–118. MR 0391104
- J. C. Cantrell, Almost locally flat embeddings of $S^{n-1}$ in $S^{n}$, Bull. Amer. Math. Soc. 69 (1963), 716–718. MR 154288, DOI 10.1090/S0002-9904-1963-10998-2
- J. C. Cantrell and R. C. Lacher, Some local flatness criteria for low codimensional submanifolds, Quart. J. Math. Oxford Ser. (2) 21 (1970), 129–136. MR 261608, DOI 10.1093/qmath/21.2.129
- J. C. Cantrell, T. M. Price, and T. B. Rushing, A class of embeddings of $S^{n-1}$ and $B^{n}$ in $R^{n}$, Proc. Amer. Math. Soc. 29 (1971), 208–210. MR 275445, DOI 10.1090/S0002-9939-1971-0275445-5
- A. V. Černavskiĭ, The $k$-stability of homeomorphisms and the union of cells, Dokl. Akad. Nauk SSSR 180 (1968), 1045–1047 (Russian). MR 0231364
- A. V. Černavskiĭ, Locally homotopically unknotted embeddings of manifolds, Dokl. Akad. Nauk SSSR 181 (1968), 290–293 (Russian). MR 0232395
- A. V. Černavskiĭ, Homeomorphisms of euclidean space and topological imbeddings of polyhedra in euclidean spaces. III, Mat. Sb. (N.S.) 75 (117) (1968), 264–295 (Russian). MR 0244974
- A. V. Černavskiĭ, The identity of local flatness and local simple connectedness for imbeddings of $(n-1)$-dimensional into $n$-dimensional manifolds when $n>4$, Mat. Sb. (N.S.) 91(133) (1973), 279–286, 288 (Russian). MR 0334222 [C14] J. Cobb, Visible taming of 2-spheres in E3 (to appear).
- E. H. Connell, Approximating stable homeomorphisms by piecewise linear ones, Ann. of Math. (2) 78 (1963), 326–338. MR 154289, DOI 10.2307/1970346
- Robert Connelly, A new proof of Brown’s collaring theorem, Proc. Amer. Math. Soc. 27 (1971), 180–182. MR 267588, DOI 10.1090/S0002-9939-1971-0267588-7
- M. L. Curtis and E. C. Zeeman, On the polyhedral Schoenflies theorem, Proc. Amer. Math. Soc. 11 (1960), 888–889. MR 119208, DOI 10.1090/S0002-9939-1960-0119208-2
- Robert J. Daverman, Slicing theorems for $n$-spheres in Euclidean $(n+1)$-space, Trans. Amer. Math. Soc. 166 (1972), 479–489. MR 295356, DOI 10.1090/S0002-9947-1972-0295356-4
- Robert J. Daverman, Pushing an $(n-l)$-sphere in $S^{n}$ almost into its complement, Duke Math. J. 39 (1972), 719–723. MR 314055
- Robert J. Daverman, On the scarcity of tame disks in certain wild cells, Fund. Math. 79 (1973), no. 1, 63–77. MR 326742, DOI 10.4064/fm-79-1-63-77
- Robert J. Daverman, Locally nice codimension one manifolds are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410–413. MR 321095, DOI 10.1090/S0002-9904-1973-13190-8
- Robert J. Daverman, Factored codimension one cells in Euclidean $n$-space, Pacific J. Math. 46 (1973), 37–43. MR 368015, DOI 10.2140/pjm.1973.46.37
- Robert J. Daverman, Approximating polyhedra in codimension one spheres embedded in $s^{n}$ by tame polyhedra, Pacific J. Math. 51 (1974), 417–426. MR 362326, DOI 10.2140/pjm.1974.51.417
- Robert J. Daverman, Wild spheres in $E^{n}$ that are locally flat modulo tame Cantor sets, Trans. Amer. Math. Soc. 206 (1975), 347–359. MR 375329, DOI 10.1090/S0002-9947-1975-0375329-6
- Robert J. Daverman, On the absence of tame disks in certain wild cells, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 142–155. MR 0400236
- Robert J. Daverman, A summary of results and problems concerning flatness of codimension one spheres in $E^{n}$, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 156–165. MR 0407847
- Robert J. Daverman, Singular regular neighborhoods and local flatness in codimension one, Proc. Amer. Math. Soc. 57 (1976), no. 2, 357–362. MR 420630, DOI 10.1090/S0002-9939-1976-0420630-7 [D11] R. J. Daverman, Flattening a codimension one manifold by piercing with cells (to appear). [D12] R. J. Daverman, Sewings of closed n-cell-complements (to appear).
- Robert J. Daverman, Every crumpled $n$-cube is a closed $n$-cell-complement, Michigan Math. J. 24 (1977), no. 2, 225–241. MR 488066
- Robert J. Daverman, Special approximations to embeddings of codimension one spheres, Pacific J. Math. 76 (1978), no. 1, 21–32. MR 499630, DOI 10.2140/pjm.1978.76.21 [D15] R. J. Daverman and W. T. Eaton, The cartesian product of a line with the union of two crumpled cubes, Notices Amer. Math. Soc. 15 (1968), 542. Abstract #68T-349.
- R. J. Daverman and S. A. Pax, Cross-sectionally simple spheres can be wild, General Topology Appl. 10 (1979), no. 2, 139–146. MR 527840, DOI 10.1016/0016-660x(79)90003-5
- W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375–378. MR 239600, DOI 10.1090/S0002-9904-1969-12180-4
- W. T. Eaton, Taming a surface by piercing with disks, Proc. Amer. Math. Soc. 22 (1969), 724–727. MR 246275, DOI 10.1090/S0002-9939-1969-0246275-6
- W. T. Eaton, The sum of solid spheres, Michigan Math. J. 19 (1972), 193–207. MR 309116, DOI 10.1307/mmj/1029000892
- W. T. Eaton, A generalization of the dog bone space to $E^{n}$, Proc. Amer. Math. Soc. 39 (1973), 379–387. MR 322877, DOI 10.1090/S0002-9939-1973-0322877-4
- Robert D. Edwards, Demension theory. I, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 195–211. MR 0394678 [E6] R. D. Edwards, The double suspension of a certain homology 3-sphere is S3, Notices Amer. Math. Soc. 22 (1975), A-334. Abstract #75T-G33. [E7] R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, (preprint).
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979–990. MR 27512, DOI 10.2307/1969408
- O. G. Harrold and C. L. Seebeck, Locally weakly flat spaces, Trans. Amer. Math. Soc. 138 (1969), 407–414. MR 239597, DOI 10.1090/S0002-9947-1969-0239597-0
- John Hempel, A surface in $S^{3}$ is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273–287. MR 160195, DOI 10.1090/S0002-9947-1964-0160195-7 [H3] N. Hosay, The sum of a real cube and a crumpled cube is S3, Notices Amer. Math. Soc. 10 (1963), 666. Abstract #607-17. See also errata 11 (1964), 152.
- Norman Hosay, A proof of the slicing theorem for $2$-spheres, Bull. Amer. Math. Soc. 75 (1969), 370–374. MR 239599, DOI 10.1090/S0002-9904-1969-12178-6
- W.-c. Hsiang and C. T. C. Wall, On homotopy tori. II, Bull. London Math. Soc. 1 (1969), 341–342. MR 258044, DOI 10.1112/blms/1.3.341 [H6] T. Hutchinson, Two point spheres are flat, Notices Amer. Math. Soc. 14 (1967), 344. Abstract #644-18.
- R. A. Jensen and L. D. Loveland, Surfaces of vertical order $3$ are tame, Bull. Amer. Math. Soc. 76 (1970), 151–154. MR 250281, DOI 10.1090/S0002-9904-1970-12409-0
- Robion C. Kirby, On the set of non-locally flat points of a submanifold of codimension one, Ann. of Math. (2) 88 (1968), 281–290. MR 236900, DOI 10.2307/1970575
- Robion C. Kirby, The union of flat $(n-1)$-balls is flat in $R^{n}$, Bull. Amer. Math. Soc. 74 (1968), 614–617. MR 225328, DOI 10.1090/S0002-9904-1968-12034-8
- R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742–749. MR 242166, DOI 10.1090/S0002-9904-1969-12271-8
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- Lloyd L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534–549. MR 178460, DOI 10.1090/S0002-9947-1965-0178460-7
- D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327–337. MR 161320, DOI 10.2307/1970548 [M2] D. R. McMillan, Jr., An arc in M ≥ 4 (to appear).
- Barry Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59–65. MR 117693, DOI 10.1090/S0002-9904-1959-10274-3
- R. P. Osborne, Embedding Cantor sets in a manifold. II. An extension theorem for homeomorphisms on Cantor sets, Fund. Math. 65 (1969), 147–151. MR 247620, DOI 10.4064/fm-65-2-147-151
- T. M. Price and C. L. Seebeck III, Somewhere locally flat codimension one manifolds with $1-\textrm {ULC}$ complements are locally flat, Trans. Amer. Math. Soc. 193 (1974), 111–122. MR 346796, DOI 10.1090/S0002-9947-1974-0346796-8
- T. Benny Rushing, Topological embeddings, Pure and Applied Mathematics, Vol. 52, Academic Press, New York-London, 1973. MR 0348752 [S1] A. Schoenflies, Die Entwicklung der Lehre von den Punktmannigfaltigkeiten, vol. II, Tubner, Leipzig, 1908.
- C. L. Seebeck III, Collaring and $(n-1)$-manifold in an $n$-manifold, Trans. Amer. Math. Soc. 148 (1970), 63–68. MR 258045, DOI 10.1090/S0002-9947-1970-0258045-6
- Charles L. Seebeck III, Tame arcs on wild cells, Proc. Amer. Math. Soc. 29 (1971), 197–201. MR 281177, DOI 10.1090/S0002-9939-1971-0281177-X [S4] C. L. Seebeck III, Codimension one manifolds that are locally homotopically unknotted on one side, I, II (to appear).
- R. B. Sher, Tame polyhedra in wild cells and spheres, Proc. Amer. Math. Soc. 30 (1971), 169–174. MR 281178, DOI 10.1090/S0002-9939-1971-0281178-1
- L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271–294. MR 295365, DOI 10.1016/0040-9383(72)90014-6
- L. C. Siebenmann, Topological manifolds, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 133–163. MR 0423356
- Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391–406. MR 137124, DOI 10.2307/1970239
- M. A. Štan′ko, Imbedding of compacta in euclidean space, Mat. Sb. (N.S.) 83 (125) (1970), 234–255 (Russian). MR 0271923, DOI 10.1070/SM1970v012n02ABEH000919
- M. A. Štan′ko, Approximation of compacta in $E^{n}$ in codimension greater than two, Mat. Sb. (N.S.) 90(132) (1973), 625–636, 640 (Russian). MR 0339194
- M. A. Štan′ko, Approximation of embeddings of manifolds in codimension one, Mat. Sb. (N.S.) 94(136) (1974), 483–494, 496 (Russian). MR 0370596
- Lawrence R. Weill, A new characterization of tame $2$-spheres in $E^{3}$, Trans. Amer. Math. Soc. 190 (1974), 243–252. MR 339188, DOI 10.1090/S0002-9947-1974-0339188-9
- Raymond Louis Wilder, Topology of manifolds, American Mathematical Society Colloquium Publications, Vol. XXXII, American Mathematical Society, Providence, R.I., 1963. MR 0182958
Additional Information
- Journal: Bull. Amer. Math. Soc. 84 (1978), 377-405
- MSC (1970): Primary 57A45, 57A15, 57A35, 57A40; Secondary 57A10, 57C15, 57C30, 57C35
- DOI: https://doi.org/10.1090/S0002-9904-1978-14476-0
- MathSciNet review: 0645404