The integrability problem for Lie equations
HTML articles powered by AMS MathViewer
- by Hubert Goldschmidt PDF
- Bull. Amer. Math. Soc. 84 (1978), 531-546
References
- Claudette Buttin and Pierre Molino, Théorème général d’équivalence pour les pseudogroupes de Lie plats transitifs, J. Differential Geometry 9 (1974), 347–354 (French). MR 353382 2. É. Cartan, Sur la structure des groupes infinis de transformations, Ann. Sci. École Norm. Sup. 21 (1904), 153-206; 22 (1905), 219-308; Oeuvres complètes: II, vol. 2, Groupes infinis, systèmes différentiels, théories d’équivalence, Gauthier-Villars, Paris, 1953, pp. 571-714.
- Elie Cartan, Œuvres complètes. Partie II. Vol. 1. Algèbre, formes différentielles, systèmes différentiels. Vol. 2. Groupes infinis, systèmes différentiels, théories d’équivalence, Gauthier-Villars, Paris, 1953 (French). MR 0058523
- Jack F. Conn, A new class of counterexamples to the integrability problem, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 7, 2655–2658. MR 464334, DOI 10.1073/pnas.74.7.2655
- Jack F. Conn, Nonabelian minimal closed ideals of transitive Lie algebras, Mathematical Notes, vol. 25, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 595686, DOI 10.1515/9781400853656
- Hubert Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2) 86 (1967), 246–270. MR 219859, DOI 10.2307/1970689
- Hubert Goldschmidt, Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan, Ann. Sci. École Norm. Sup. (4) 1 (1968), 417–444. MR 235584, DOI 10.24033/asens.1168
- Hubert Goldschmidt, On the Spencer cohomology of a Lie equation, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 379–385. MR 0343322
- Hubert Goldschmidt, Sur la structure des équations de Lie. I. Le troisième théorème fondamental, J. Differential Geometry 6 (1971/72), 357–373 (French). MR 301768
- Hubert Goldschmidt, Sur la structure des équations de Lie. II. Équations formellement transitives, J. Differential Geometry 7 (1972), 67–95 (French). MR 326783
- Hubert Goldschmidt, Sur la structure des équations de Lie. III. La cohomologie de Spencer, J. Differential Geometry 11 (1976), no. 2, 167–223 (French). MR 517115
- Hubert Goldschmidt and Donald Spencer, On the non-linear cohomology of Lie equations. I, Acta Math. 136 (1976), no. 1-2, 103–170. MR 445566, DOI 10.1007/BF02392044 13. H. Goldschmidt and D. Spencer, On the non-linear cohomology of Lie equations. III, IV, J. Differential Geometry 13 (1978).
- Victor Guillemin, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geometry 2 (1968), 313–345. MR 263882
- Victor W. Guillemin and Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16–47. MR 170295, DOI 10.1090/S0002-9904-1964-11019-3
- V. W. Guillemin and S. Sternberg, The Lewy counterexample and the local equivalence problem for $G$-structures, J. Differential Geometry 1 (1967), 127–131. MR 222800, DOI 10.4310/jdg/1214427885
- Antonio Kumpera and Donald Spencer, Lie equations. Vol. I: General theory, Annals of Mathematics Studies, No. 73, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0380908
- M. Kuranishi and A. M. Rodrigues, Quotients of pseudo groups by invariant fiberings, Nagoya Math. J. 24 (1964), 109–128. MR 168705, DOI 10.1017/S0027763000011351
- Bernard Malgrange, Equations de Lie. I, J. Differential Geometry 6 (1972), 503–522 (French). MR 326784
- Pierre Molino, Théorie des $G$-structures: le problème d’équivalence, Lecture Notes in Mathematics, Vol. 588, Springer-Verlag, Berlin-New York, 1977 (French). Notes rédigées avec la collaboration de F. Toupine. MR 0517117, DOI 10.1007/BFb0091878
- Alan S. Pollack, The integrability problem for pseudogroup structures, J. Differential Geometry 9 (1974), 355–390. MR 353383
- D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I. Infinitesimal deformations of structure, Ann. of Math. (2) 76 (1962), 306–398. MR 156363, DOI 10.2307/1970277
Additional Information
- Journal: Bull. Amer. Math. Soc. 84 (1978), 531-546
- MSC (1970): Primary 58H05, 22E65, 58G99, 35N10, 53C10
- DOI: https://doi.org/10.1090/S0002-9904-1978-14492-9
- MathSciNet review: 0517116