Some recent discoveries in the isomorphic theory of Banach spaces
HTML articles powered by AMS MathViewer
- by Haskell P. Rosenthal PDF
- Bull. Amer. Math. Soc. 84 (1978), 803-831
References
- Dale E. Alspach, Quotients of $C[0,\,1]$ with separable dual, Bull. Amer. Math. Soc. 83 (1977), no. 5, 1057–1059. MR 626370, DOI 10.1090/S0002-9904-1977-14383-8
- D. Amir, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964), 396–402. MR 165350, DOI 10.1090/S0002-9939-1964-0165350-3 3. R. Baire, Sur les fonctions des variables réelles, Ann. Mat. Pura Appl. (3) 3 (1899), 16, 30. 4. S. Banach, Théorie des operations linéaires, Warszawa, 1932; Reprint, Chelsea, New York.
- Y. Benyamini, An extension theorem for separable Banach spaces, Israel J. Math. 29 (1978), no. 1, 24–30. MR 482075, DOI 10.1007/BF02760399
- C. Bessaga and A. Pełczyński, A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165–174. MR 115071, DOI 10.4064/sm-17-2-165-174
- J. Bourgain, D. H. Fremlin, and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), no. 4, 845–886. MR 509077, DOI 10.2307/2373913
- Antoine Brunel and Louis Sucheston, Sur les amarts faibles à valeurs vectorielles, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 17, Aiii, A1011–A1014 (French, with English summary). MR 415761 9. G. Choquet, Remarques à propos de la démonstration de l’unicite de P.A. Meyer, Séminaire Brelot-Choquet-Deny (Théorie de Potential) 6 (1962), No. 8, 13 pp.
- D. Dacunha-Castelle and J.-L. Krivine, Sous-espaces de $L^{1}$, Israel J. Math. 26 (1977), no. 3-4, 320–351 (French, with English summary). MR 626845, DOI 10.1007/BF03007651
- Leonard E. Dor, On sequences spanning a complex $l_{1}$ space, Proc. Amer. Math. Soc. 47 (1975), 515–516. MR 358308, DOI 10.1090/S0002-9939-1975-0358308-X
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160. MR 0139079
- Erik Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163–165. MR 349393, DOI 10.2307/2272356
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288 (1973). MR 336297, DOI 10.1007/BF02762802 16. H. Fakhoury, Sur les espaces de Banach ne contenant pas l(N) (to appear). 17. J. Farahat, Espaces de Banach contenant l1 d’après H. P. Rosenthal, Seminaire Maurey-Schwartz, École Polytechnique, 1973-1974.
- T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no $l_{p}$, Compositio Math. 29 (1974), 179–190. MR 355537
- Fred Galvin and Karel Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973), 193–198. MR 337630, DOI 10.2307/2272055
- James Hagler, Some more Banach spaces which contain $L^{1}$, Studia Math. 46 (1973), 35–42. MR 333670, DOI 10.4064/sm-46-1-35-42
- James Hagler, Nonseparable “James tree” analogues of the continuous functions on the Cantor set, Studia Math. 61 (1977), no. 1, 41–53. MR 435799, DOI 10.4064/sm-61-1-41-53
- James Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), no. 3, 289–308. MR 442651, DOI 10.4064/sm-60-3-289-308
- J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), no. 4, 325–330. MR 482086, DOI 10.1007/BF02760638
- J. Hagler and E. Odell, A Banach space not containing $l_{1}$ whose dual ball is not weak* sequentially compact, Illinois J. Math. 22 (1978), no. 2, 290–294. MR 482087, DOI 10.1215/ijm/1256048738
- Richard Haydon, Some more characterizations of Banach spaces containing $l_{1}$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 269–276. MR 423047, DOI 10.1017/S0305004100052890
- Richard Haydon, On Banach spaces which contain $l^{1}(\tau )$ and types of measures on compact spaces, Israel J. Math. 28 (1977), no. 4, 313–324. MR 511799, DOI 10.1007/BF02760637
- Felix Hausdorff, Set theory, 2nd ed., Chelsea Publishing Co., New York, 1962. Translated from the German by John R. Aumann et al. MR 0141601
- R. E. Huff and P. D. Morris, Dual spaces with the Krein-Milman property have the Radon-Nikodým property, Proc. Amer. Math. Soc. 49 (1975), 104–108. MR 361775, DOI 10.1090/S0002-9939-1975-0361775-9
- Robert C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518–527. MR 39915, DOI 10.2307/1969430
- Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542–550. MR 173932, DOI 10.2307/1970663
- Robert C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743. MR 417763, DOI 10.1090/S0002-9904-1974-13580-9
- W. B. Johnson and H. P. Rosenthal, On $\omega ^{\ast }$-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. MR 310598, DOI 10.4064/sm-43-1-77-92
- W. B. Johnson and M. Zippin, Subspaces and quotient spaces of $(\sum G_{n})_{l_{p}}$ and $(\sum G_{n})_{c_{0}}$, Israel J. Math. 17 (1974), 50–55. MR 358296, DOI 10.1007/BF02756824 34. M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L, Studia Math. 21 (1962), 161-176. 35. J. L. Krivine, Sous-espaces de dimension finie des espaces de Banach reticulés, Ann. of Math.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain $\ell _{1}$ and whose duals are non-separable, Studia Math. 54 (1975), no. 1, 81–105. MR 390720, DOI 10.4064/sm-54-1-81-105
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math. 61 (1977), no. 1, 77–98. MR 438091, DOI 10.4064/sm-61-1-77-98
- C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Cambridge Philos. Soc. 61 (1965), 33–39. MR 173640, DOI 10.1017/s0305004100038603
- A. Nissenzweig, $W^{\ast }$ sequential convergence, Israel J. Math. 22 (1975), no. 3-4, 266–272. MR 394134, DOI 10.1007/BF02761594
- E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing $l^{1}$, Israel J. Math. 20 (1975), no. 3-4, 375–384. MR 377482, DOI 10.1007/BF02760341
- A. Martineau, Sur des théorèmes de S. Banach et de L. Schwartz concernant le graphe fermé, Studia Math. 30 (1968), 43–51 (French). MR 231181, DOI 10.4064/sm-30-1-43-51
- A. Pełczyński, On $C(S)$-subspaces of separable Banach spaces, Studia Math. 31 (1968), 513–522. MR 234261, DOI 10.4064/sm-31-5-513-522
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337
- J. D. Pryce, A device of R. J. Whitley’s applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. (3) 23 (1971), 532–546. MR 296670, DOI 10.1112/plms/s3-23.3.532
- Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, DOI 10.4064/sm-37-1-13-36
- Haskell P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu$, Acta Math. 124 (1970), 205–248. MR 257721, DOI 10.1007/BF02394572
- Haskell P. Rosenthal, On factors of $C([0,\,1])$ with non-separable dual, Israel J. Math. 13 (1972), 361–378 (1973); correction, ibid. 21 (1975), no. 1, 93–94. MR 388063, DOI 10.1007/BF02762811
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- Haskell P. Rosenthal, Point-wise compact subsets of the first Baire class, with some applications to Banach space theory, Proceedings of the Seminar on Random Series, Convex Sets and Geometry of Banach Spaces (Mat. Inst., Aarhus Univ., Aarhus, 1974; dedicated to the memory of E. Asplund), Various Publications Series, No. 24, Mat. Inst., Aarhus Univ., Aarhus, 1975, pp. 176–187. MR 0394139
- Haskell P. Rosenthal, The Banach spaces $C(K)$ and $L^{p}(\mu )$, Bull. Amer. Math. Soc. 81 (1975), no. 5, 763–781. MR 380381, DOI 10.1090/S0002-9904-1975-13824-9
- Haskell P. Rosenthal, Point-wise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), no. 2, 362–378. MR 438113, DOI 10.2307/2373824
- Haskell P. Rosenthal, On a theorem of J. L. Krivine concerning block finite representability of $l^{p}$ in general Banach spaces, J. Functional Analysis 28 (1978), no. 2, 197–225. MR 493384, DOI 10.1016/0022-1236(78)90086-1 56. H. P. Rosenthal, Banach spaces generated by convergent sequences of sets (to appear).
- Andrew Sobczyk, Projection of the space $(m)$ on its subspace $(c_0)$, Bull. Amer. Math. Soc. 47 (1941), 938–947. MR 5777, DOI 10.1090/S0002-9904-1941-07593-2
- Charles Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223. MR 374381, DOI 10.1090/S0002-9947-1975-0374381-1
- Jacques Stern, A Ramsey theorem for trees, with an application to Banach spaces, Israel J. Math. 29 (1978), no. 2-3, 179–188. MR 476554, DOI 10.1007/BF02762007
- W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. MR 227743, DOI 10.4064/sm-30-1-53-61 61. B. S. Tsirelson, Not every Banach space contains l0, Functional Anal. Appl. 8 (1974), 138-141 (translated from Russian).
- L. Tzafriri, On Banach spaces with unconditional bases, Israel J. Math. 17 (1974), 84–93. MR 348456, DOI 10.1007/BF02756829
- William A. Veech, Short proof of Sobczyk’s theorem, Proc. Amer. Math. Soc. 28 (1971), 627–628. MR 275122, DOI 10.1090/S0002-9939-1971-0275122-0
- M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), no. 3-4, 372–387. MR 442649, DOI 10.1007/BF03007653
Additional Information
- Journal: Bull. Amer. Math. Soc. 84 (1978), 803-831
- MSC (1970): Primary 43A15, 46C05, 46E15, 46E30, 46G10
- DOI: https://doi.org/10.1090/S0002-9904-1978-14521-2
- MathSciNet review: 499730