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The new elements of mathematics, by Charles S. Peirce, Carolyn Eisele 
(editor), Humanities Press, Atlantic Highlands, N.J., 1976, cxxxviii + 2478 
pp., $283.00. Four volumes in five books: 
Vol. I, Arithmetic, xl, 260 pp., $31.00. 
Vol. II, Algebra and Geometry, xxxi, 672 pp., $76.00. 
Vols. HI/1, III/2, Mathematical Miscellanea, xxix, 1153 pp., $128.00. 
Vol. IV, Mathematical Philosophy, xxviii, 393 pp., $48.00. 

Charles S. Peirce, 1839 to 1914, was one of America's most outstanding 
intellects. Philosopher, mathematician, and scientist, he wrote profusely, the 
equivalent of almost 100,000 printed pages in all. He was able to publish only 
about one-seventh of this, and most of his writings in mathematics and logic 
were never published during his lifetime. 

The Collected papers of Charles Sanders Peirce appeared from 1931 to 1958; 
volumes 1 to 6 were edited by Charles Hartshorne and Paul Weiss 
(1931-1935), and volumes 7 and 8 by the present writer (1958). While these 
volumes included some previously unpublished papers in mathematical logic, 
by design they included almost none of Peirce's other papers in mathematics, 
nor his drafts of textbooks. 

Carolyn Eisele, Professor Emeritus of Mathematics at Hunter College, has 
now filled this gap. She has edited about 2500 pages of the unpublished 
manuscripts, encompassing pure mathematics, numerous applications, and 
some rather ingenious textbook materials. The new elements of mathematics 
includes Peirce's papers on linear algebra and matrices, Euclidean and 
non-Euclidean geometry, topology and Listing numbers, graphs, and the 
four-color problem; also, his mathematical applications to economics, map 
projections, engineering, and the theory of errors. In addition, there are 
writings on the logic of relatives, Boolean algebra, and the nature of 
continuity; on probability, inductive logic, and applications of induction to 
historical inquiry. Finally, Professor Eisele provides most of Peirce's drafts of 
textbooks on arithmetic, geometry, and trigonometry. 

Charles Peirce was the son of Benjamin Peirce (1809-1880), America's first 
original mathematician, whose Linear associative algebra appeared in 1870. 
Charles derived many results from his father's algebras, and he demonstrated 
their connection to relations (matrices). 

Charles Peirce also proved a theorem about the rotation of bodies in 
four-dimensional space. But his most important mathematical results were in 
symbolic logic, a subject not generally accepted by mathematicians in Peirce's 
time. He developed the formalism of the propositional calculus and the 
general logic of quantifiers, independently of, though a little later than, 
Gottlob Frege. Independently of Dedekind, Peirce defined a finite set as one 
that cannot be put in one-one correspondence with a proper subset of itself. 
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He was the first to define all Boolean functions in terms of the single 
primitives "not-and" and "not-or" and to conceive of the truth-table method 
of evaluating truth-functions. He also was the first to develop multi-valued 
logics. 

Peirce's only regular occupation was as a physicist with the United States 
Coast and Geodetic Survey. He achieved great distinction in this position, 
and, appropriately, the National Oceanic and Atmospheric Administration 
now has an instrumented ship named after him. Peirce's job was to measure 
and compare the force of gravity at various places in the United States and 
Europe by swinging pendula, to help determine the ellipticity of the earth. He 
became fascinated by the problem of experimental error and its relation to 
the classical issue of determinism versus indeterminism. Using both experi
ment and statistical theory, he analyzed the errors in measuring the force of 
gravity with the current pendula and techniques, and proved that the errors 
were 100 times as great as the experts had believed! 

His interest in the accuracy of measurement led Peirce to suggest that the 
best standard of length would be a wavelength of light produced by a specific 
element. Such a standard is now used, the meter being defined as so many 
wavelengths in vacuum of the orange-red line of the spectrum of a particular 
isotope of krypton. 

Charles Peirce's most original work was in general logic, the methodology 
of inquiry, and the philosophy of science. He was interested in applying 
mathematics to inquiry in many forms and in many areas. He was the first to 
develop inductive logic in terms of statistics and probability, and the first to 
formalize modal logic. He sought a quantitative measure of information. He 
connected statistics to Darwin's theory of the evolution of natural species and 
was the first to see that evolution could be given a mathematical formulation. 
He used calculus to analyze the market, and made a mathematical analysis of 
the most economic way to do research. He wrote a long paper on the 
inductive logic of history. 

When Peirce worked in science and mathematics he was constantly think
ing of their methods, their foundational principles, and their philosophical 
implications. He founded pragmatism, developing it out of his probabilistic 
analysis of the evolution of belief. He created an evolutionary metaphysics 
embracing cosmic evolution, biological evolution, and social evolution. 
According to Peirce, the basic laws are probabilistic and not reducible to 
universal causal laws. These laws produce change gradually, so that mathe
matically continuous functions are always applicable. 

The role of these two factors of chance and continuity in Darwinian 
evolution is clear enough. Chance produces the variation to be tested by the 
environment, and the evolution of species is continuous, not discrete as in 
creationism. It is interesting to see how Peirce's two principles have fared in 
quantum mechanics, a subject that appeared after his death. Let us assume 
that John von Neumann's foundational analysis holds for the ultimate form 
of quantum mechanics. Then, by his theorem that there are no hidden 
parameters, the probabilistic laws of quantum mechanics are basic and are 
not reducible to deterministic laws. So Peirce is correct on the basic role of 
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chance. But since matter as depicted by quantum mechanics is discrete, 
Peirce's continuity principle fails. 

Although Peirce never held a regular university position, he did teach for a 
few years at Johns Hopkins in Baltimore, while still working for the Coast 
Survey in Washington. He had some excellent students, whom he taught 
methods of research: Joseph Jastrow, who did experimental work with Peirce 
on the probabilistic character of the threshold of sensation; Christine Ladd-
Franklin, who invented a new way of testing syllogisms and later a theory of 
color vision; and Alan Marquand, who designed logic machines and later 
became an outstanding professor of classical archeology at Princeton 
University. John Dewey was also a student of Peirce's at Johns Hopkins, but 
was not influenced by him until later. 

In his opening lecture to his logic course in the fall of 1882, Peirce said: 

This is the age of methods; and the university which is to be the exponent 
of the living condition of the human mind, must be the university of 
methods... 

. . . when new paths have to be struck out, a spinal cord is not enough; a 
brain is needed, and that brain an organ of mind, and that mind perfected 
by a liberal education. And a liberal education-so far as its relation to the 
understanding goes-means logic. That is indispensable to it, and no other 
one thing is. 

Peirce was advocating two interrelated policies here. First, that the university 
should teach its students how to solve problems and obtain new results. The 
student's acquisition of existing knowledge was to be directed toward this 
end. Peirce himself successfully employed this policy with Jastrow, Ladd-
Franklin, and Marquand. 

Peirce's second theme was that science was becoming aware of its method
ology and that new methods of research were being developed, such as 
experimental method in psychology. Further, Peirce thought the time was ripe 
for the general theory of methods, the core of which was logic in a sense both 
broad and deep. He regarded mathematical logic as the foundation of all 
reasoning. Inductive logic, including the applications of probability and 
statistics, was a second important branch of logic. The third branch was a 
logic of discovery that would contain rules and procedures helpful in solving 
problems and discovering new results. Peirce believed that his general theory 
of methods would unify the methods employed in inquiry and lead to their 
improvement. 

About twenty years later Peirce sought to apply his conception of method
ology and its role in education to the teaching of mathematics. He wrote 
textbook manuscripts in arithmetic, algebra, and geometry. These drafts are 
among the most interesting papers in The new elements of mathematics; they 
are reproduced in volumes I and II. 

To place Peirce's textbooks in proper historical perspective, we should bear 
in mind that the teaching of mathematics in his time relied heavily on rote 
learning and extended practice, with little emphasis on intuitive understand
ing or the interrelations of the concepts and rules or the relation of 
mathematical entities to their instances and applications. This general 
situation continued, with gradual improvement, until about twenty years ago, 
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when the Russians, with their Sputnik, beat the United States in the race to 
put a satellite in space. That event led to a revolution in the teaching of 
elementary and intermediate mathematics. Some of the methods developed 
were strikingly similar to those Peirce had advocated, unsuccessfully, nearly 
sixty years earlier. 

I recall, as a mathematics student in the thirties, that set theory and logic 
did not appear in the curriculum until graduate school. After Sputnik, the 
stress shifted from rote computational skills to teaching concepts. Some set 
theory was introduced in elementary school and some logic in high school. 

The pedagogy of mathematics was improved considerably. But there were 
defects. Sometimes too much conceptual apparatus was introduced in the 
lower grades, with too little attention to computation and applications; bright 
high school students were sometimes pushed beyond their maturational 
capacities. And subject-matter change, however desirable, could not remedy 
the scarcity of able and inspiring teachers, more important in mathematics, 
perhaps, than in any other discipline. 

Let me illustrate the problem at the elementary level with an extreme 
example that came to my attention. The teacher asked the pupils to "get out 
their sets," at which they removed strings and counters from their desks. She 
next asked them to form "the null set," whereupon they arranged their strings 
in empty circles! She then asked them to form the set for one, whereupon 
they put a counter inside the circle; and similarly for two, three, etc. 

Peirce had a better way, in my opinion, of teaching counting and the basis 
of set theory to young children. He considered ordinals psychologically more 
basic than cardinals. To combine concepts and applications, he used decks of 
sequentially-numbered cards. The teacher placed some of these cards face 
down. The question, "How many of the cards are turned face up?" brought 
the answer, "None." Then the cards were turned up one by one and the 
question repeated, with the children counting aloud. The cards were also 
arranged in various patterns, with questions asked to stimulate the manipu
lation of numbers and familiarity with their systematic character. That the 
children were working with ordinal sets was a mathematical concept to be 
introduced later, when the students were more mature. 

For more advanced students Peirce explained arithmetic operations in 
terms of counting the elements of sets in the following way: 

Addition is the operation of finding how many in all there are in two or 
more mutually exclusive collections. 

Multiplication is the operation of finding how many pairs there are of 
which one member comes from one and the other from another collection. 
Continued multiplication finds how many sets there are of which one 
member is drawn from a collection of given quotal number. Thus, twice 
three is 

|/.\|.fc\|.V.|.V.|.**%|.\\| 
Figure 1 (6 ways) 

Involution is the operation of finding in how many ways every member of 
one collection can be paired with a member of another collection. Thus 23 is 
as follows 
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|AS|A\|A^|/A|^|^|^;|^\| 

Figure 2 (8 ways) 

while 32 is as follows 

|*v|w|\v|y;|7V|y/|*TAT;/| 
Figure 3 (9 ways) 

(Vol. I, Arithmetic, pp. xxxiv-xxxv.) He treated other bases than ten, and he 
had an interesting algorithm for quickly adding lists of binary numbers. He 
introduced binary numbers with the game of twenty questions. 

Peirce tried hard to get his textbooks published, and he even had the 
assistance of his brother, James Mills Peirce, a Harvard professor of 
mathematics. He failed, partially because he, like many original minds, could 
teach and inspire the ablest, but could not reach average students and 
average teachers. But a more basic reason for Peirce's failure was that he was 
too far ahead of his time. 

Of course, it is a manifestation of genius to have an idea long before it is 
understood and appreciated. Let me close by outlining the background for 
another of Peirce's logical ideas of great originality, the idea for a general-
purpose relay computer, which was fifty years ahead of its time. The sequence 
of events is as follows: 

1. Peirce stimulated Alan Marquand to invent and build a mechanical logic 
machine superior to that of William Stanley Jevons. This machine is de
scribed in Peirce's Logical machines, vol. Ill, pt. 1, pp. 625-632. 

2. This machine was built in the early 1880s. At about the same time, Peirce 
conceived the sufficiency of "not-and" and "not-or," together with the use of 
a truth-table as a decision procedure for tautologyhood. 

3. In a letter to Marquand dated 1886 Peirce suggested the use of relays for 
Marquand's machine and showed how to achieve "and" and "or" with relays. 
" . . . it is by no means hopeless . . . to make a machine for really very 
difficult mathematical problems (ibid., p. 632). 

4. Marquand then prepared a wiring diagram for a relay version of his 
mechanical logic machine. 

5. In 1900, Peirce stated that a computer could enumerate all the theorems 
of axiomatic arithmetic, thus anticipating the 20th century identification of 
logic with computers. See Our senses as reasoning machines, vol. Ill, pt. 2, pp. 
1114—1115. 

Peirce knew of Charles Babbage's attempt to build an "analytical engine." 
This was to be a general-purpose mechanical computer for calculating 
functions and making tables. Babbage worked on his machine a long time, 
but never completed it, partly because of the inadequacy of mechanical 
technology for that purpose. I think that when Peirce wrote his 1886 letter he 
saw that a relay version of Babbage's machine could be built and that it 
would work. The first general-purpose relay computer was completed after 
World War II, at about the same time that the ENIAC, the first general-
purpose electronic computer, was completed! 
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We are all greatly indebted to Professor Carolyn Eisele for bringing 
together the most important of Peirce's unpublished manuscripts on 
mathematics; for her discriminating selection from a vast amount of material; 
and for her extensive historical researches, the results of which she has 
presented in the introduction. 

ARTHUR W. BURKS 
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 84T Number 5, September 1978 
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Supercompactness and Wallman spaces, by J. Van Mill, Mathematical Centre 
Tracts 85, Mathematisch Centrum, Amsterdam, 1977, iv + 238 pp. 

Supercompactness spaces are compact spaces characterized by having a 
binary subbase. That is, there is a subbase S for the closed sets with the 
property that if £ c § and D S = 0 then there are two sets 1^ L, E t such 
that LQÇ) LX = 0 . The main goal of this monograph is to study supercompact 
spaces and supercompact extensions of arbitrary topological spaces. 

Supercompact spaces were first defined by J. DeGroot in 1967 and arose 
from investigations on complete regularity and compactification theory. A 
number of mathematicians became interested in DeGroot's work and many 
of his conjectures have now been proved, new techniques have been devel
oped, and new questions have arisen. This book presents known and new 
results in a structured form with sufficient auxiliary and background material 
to make the subject accessible to a reader with a solid course in graduate level 
general topology. The main appeal of the book however will be for those who 
have an interest in pursuing research in this area. 

In the first chapter, supercompact spaces are studied in general. Topics 
included are; Hausdorff continuous images of supercompact Hausdorff 
spaces, the notion of an interval structure and its use in characterizing 
supercompactness, the relation between graphs and supercompact spaces, 
regular supercompact spaces (those possessing a binary base which generates 
a ring of regular closed sets), and partial orderings on supercompact spaces. 
DeGroot conjectured that every compact metric space is supercompact and 
that not every compact Hausdorff space is supercompact. Although these 
conjectures have been proven true, there are still many open questions and 
several are explicitly mentioned. 

Using the notion of maximal linked systems, supercompact extensions of 
topological spaces arc obtained in a manner analogous to the construction of 
Wallman-type compactifications. In Chapter II, properties of superextensions 
(and their subspaces) are studied: those they inherit from the underlying 
space, and those which are new and unexpected. The contractibility of 
superextensions is also investigated. 

Metrizable superextensions are studied in Chapter III, with particular 
emphasis on infinite dimensional problems, such as: is the superextension of 
the closed unit interval homeomorphic to the Hubert cube? (An affirmative 
answer is given.) 

The subject of Chapter IV reflects the second part of the book's title and 
relates only incidentally to supercompact spaces. Two questions are 


