Problems in harmonic analysis related to curvature
HTML articles powered by AMS MathViewer
- by Elias M. Stein and Stephen Wainger PDF
- Bull. Amer. Math. Soc. 84 (1978), 1239-1295
References
- D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249–304. MR 440695, DOI 10.1007/BF02394573 H. Buseman and W. Feller [1934], Differentiation der L-integrale, Fund. Math. 22, 226-256.
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1–64. MR 417687, DOI 10.1016/0001-8708(75)90099-7
- A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, DOI 10.1007/BF02392130
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- J. L. Clerc and E. M. Stein, $L^{p}$-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911–3912. MR 367561, DOI 10.1073/pnas.71.10.3911
- R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838–2839. MR 303226, DOI 10.1073/pnas.69.10.2838
- A. Cordoba and R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. (2) 102 (1975), no. 1, 95–100. MR 379785, DOI 10.2307/1970976
- A. Córdoba and R. Fefferman, On differentiation of integrals, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 6, 2211–2213. MR 476977, DOI 10.1073/pnas.74.6.2211 A. Erdélyi [1953], Higher transcendental functions, vol. 2, McGraw-Hill, New York.
- Eugene B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966/67), 81–131. MR 213744, DOI 10.4064/sm-28-1-81-131
- Eugene B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966/67), 81–131. MR 213744, DOI 10.4064/sm-28-1-81-131
- E. B. Fabes and N. M. Rivière, Symbolic calculus of kernels with mixed homogeneity, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 106–127. MR 0236773
- Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, DOI 10.1007/BF02394567
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- Miguel de Guzmán, Differentiation of integrals in $R^{n}$, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR 0457661, DOI 10.1007/BFb0081986
- Edmund Hlawka, Über Integrale auf konvexen Körpern. I, Monatsh. Math. 54 (1950), 1–36 (German). MR 37003, DOI 10.1007/BF01304101
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), no. 1, 81–116. MR 1555303, DOI 10.1007/BF02547518
- C. S. Herz, Fourier transforms related to convex sets, Ann. of Math. (2) 75 (1962), 81–92. MR 142978, DOI 10.2307/1970421
- C. S. Herz, On the number of lattice points in a convex set, Amer. J. Math. 84 (1962), 126–133. MR 139583, DOI 10.2307/2372808
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- B. Frank Jones Jr., A class of singular integrals, Amer. J. Math. 86 (1964), 441–462. MR 161099, DOI 10.2307/2373175 S. Kaczmarz and H. Steinhaus [1951], Theorie der Orthogonalreihen, Chelsea, New York.
- A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578. MR 460543, DOI 10.2307/1970887
- Adam Koranyi, Harmonic functions on symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and Appl. Math., Vol. 8, Dekker, New York, 1972, pp. 379–412. MR 0407541 J. E. Littlewood and R.E.A.C Paley [1931], [1936], [1937], Theorems on Fourier Series and Power Series, (I), J. London Math. Soc. 6, 230-233; (II) Proc. London Math. Soc. 42, 52-89; (III) ibid. 43, 105-126.
- Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. MR 155146, DOI 10.1090/S0002-9904-1963-11025-3 J. Marcinkiewicz and A. Zygmund [1939], On the summability of double Fourier series, Fund. Math. 32, 112-132.
- S. G. Mihlin, Singular integral equations, Amer. Math. Soc. Translation 1950 (1950), no. 24, 116. MR 0036434
- Alexander Nagel, Néstor Rivière, and Stephen Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc. 80 (1974), 106–108. MR 450899, DOI 10.1090/S0002-9904-1974-13374-4
- Alexander Nagel, Néstor Rivière, and Stephen Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc. 80 (1974), 106–108. MR 450899, DOI 10.1090/S0002-9904-1974-13374-4 A. Nagel, N. M. Rivière, and S. Wainger, [1976b], A maximal function associated to the curve (t, t, Proc. Nat. Acad. Sci. U.S.A. 73, 1416-1417.
- Alexander Nagel and Stephen Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235–252. MR 423010, DOI 10.1090/S0002-9947-1976-0423010-8
- Alexander Nagel and Stephen Wainger, $L^{2}$ boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math. 99 (1977), no. 4, 761–785. MR 450901, DOI 10.2307/2373864
- Burton Randol, A lattice-point problem, Trans. Amer. Math. Soc. 121 (1966), 257–268. MR 201407, DOI 10.1090/S0002-9947-1966-0201407-2
- Burton Randol, The asymptotic behavior of a Fourier transform and the localization property for eigenfunction expansions for some partial differential operators, Trans. Amer. Math. Soc. 168 (1972), 265–271. MR 296600, DOI 10.1090/S0002-9947-1972-0296600-X
- N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243–278. MR 440268, DOI 10.1007/BF02383650
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- E. M. Stein, On limits of seqences of operators, Ann. of Math. (2) 74 (1961), 140–170. MR 125392, DOI 10.2307/1970308
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
- E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 173–189. MR 0578903
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein and Stephen Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970), 101–104. MR 265995, DOI 10.4064/sm-35-1-101-104
- E. M. Stein and S. Wainger, Maximal functions associated to smooth curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 12, 4295–4296. MR 415199, DOI 10.1073/pnas.73.12.4295
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Jan-Olov Strömberg, Weak estimates on maximal functions with rectangles in certain directions, Ark. Mat. 15 (1977), no. 2, 229–240. MR 487260, DOI 10.1007/BF02386043 E. C. Titchmarsh [1937], Introduction to the theory of the Fourier integral, Oxford Univ. Press, London.
- Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. MR 358216, DOI 10.1090/S0002-9904-1975-13790-6
- François Trèves, Basic linear partial differential equations, Pure and Applied Mathematics, Vol. 62, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0447753
- Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, DOI 10.1215/S0012-7094-39-00501-6 K. Yosida [1965], Functional analysis, Springer-Verlag, Berlin and New York.
- Felipe Zo, A note on approximation of the identity, Studia Math. 55 (1976), no. 2, 111–122. MR 423013, DOI 10.4064/sm-55-2-111-122 F. Zo, [1975], Pointwise convergence for integrable functions, Ph. D. Dissertation, Univ. of Minnesota, Minneapolis, Minn.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
- A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189–201. MR 387950, DOI 10.4064/sm-50-2-189-201
Additional Information
- Journal: Bull. Amer. Math. Soc. 84 (1978), 1239-1295
- MSC (1970): Primary 42A68, 28A15, 44A25
- DOI: https://doi.org/10.1090/S0002-9904-1978-14554-6
- MathSciNet review: 508453