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The last dozen years have been a golden age for transcendental number 
theory. It has scored successes on its own ground, while its methods have 
triumphed over problems in classical number theory involving exponential 
sums, class numbers, and Diophantine equations. Few topics in mathematics 
have such general appeal within the discipline as transcendency. Many of us 
learned of the circle squaring problem before college, and became acquainted 
with Cantor's existence proof, Liouville's construction, and even Hermite's 
proof of the transcendence of e well before the close of our undergraduate 
life. How can we learn more? 

Sophisticated readers may profitably consult the excellent survey articles of 
N. I. Feldman and A. B. Shidlovskiï [9], S. Lang [12], and W. M. Schmidt 
[17]. I will begin by addressing the beginner who has a solid understanding of 
complex variables, basic modern algebra, and the bare rudiments of algebraic 
number theory (the little book of H. Diamond and H. Pollard [8] is more than 
enough). My first advice is to read the short book of I. Niven [14] for a 
relaxed overview of the subject. If the reader is impatient, he may take 
Chapter 1 of Baker for an introduction. Either way he will learn short proofs 
of the Lindemann-Weierstrass theorem, that if the algebraic numbers 
al9..., <xn are distinct, then 

Pxe«x + . . . + fa*» ^ o 

for any nonzero algebraic numbers /f„ . . . , /?„. As special cases of this e and 
m are transcendental. These proofs are unmotivated; Baker mentions that 
they stem from the problem of approximating ex by rational functions of x, 
and refers the reader to Hermite's original papers. At this point the reader 
may also find it most enjoyable and enlightening to turn to the appendix of 
Mahler's book where a thorough discussion of most of the classical proofs for 
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e and IT is given. But our age is not history conscious, and the reader will 
probably ask "what comes next?" 

As a function of z, the exponential ez = *2zn/n\ is transcendental, and 
there is only one algebraic point at which it assumes an algebraic value, 
namely z = 0. It seems natural to conjecture that any entire transcendental 
function ƒ (z) = S^z" with the an rational is transcendental at all but finitely 
many algebraic points. However, a sparkling counter-example by P. Stackel 
[19] (based on a clever use of Cantor's diagonal enumeration procedure) 
shows there is such a function such that it and all of its derivatives are 
algebraic at every algebraic point! This is discussed in Chapter 3 of Mahler, 
where various more elaborate counter-examples and some related open 
questions are investigated. I think Stâckel's example belongs in Baker's 
treatise as well (it would fit into the blank space at the bottom of p. 8). It is in 
fact a common phenomenon that the transcendence theory of functions is 
easier than that of function values (witness the status of the Littlewood and 
Schanuel conjectures (Baker, pp. 104, 120)). On the other hand, the Stâckel 
function is very far removed from the functions that arise naturally in 
mathematics and physics, so one is tempted to modify the old conjecture by 
putting growth conditions on the numerators and denominators of the an, and 
requiring that ƒ(z) satisfy a functional equation or a linear differential 
equation with "nice" coefficients. The latter leads us into the Siegel-Shid
lovskii theory of ^-functions. 

An ^-function is a series *2anzn/nl such that (i) a^ ax,... are elements of 
an algebraic number field, and (ii) a sequence of positive integers b^ bl9... 
exists such that bna0, bnax,..., bnan and bn are all algebraic integers whose 
conjugates are at most C(e)nen for any e > 0. We restrict our attention to E-
functions that satisfy a system of homogeneous linear differential equations 

n 

where the coefficients of all the E's and f s belong to an algebraic number 
field K. What makes them so tractable is the fact that sums and products of 
^-functions are again ^-functions satisfying similar systems of differential 
equations. 

THEOREM. If the functions Ex(x),..., En(x) are algebraically independent 
over K(x), then for all but finitely many algebraic numbers a, the values 
Ex(a)9... ,En(a) are algebraically independent. 

In fact, the exceptions are at worst zero and the poles of the fj. 
Mahler's proof of the above theorem takes about 82 pp., while Baker uses 

only 6 pp.! The urge to turn to Baker is irresistable, but his dazzling 
extraction of information from determinantal equations may overwhelm the 
reader. Throughout his book Baker is elegant, concise, precise, quite comp
lete, and the devices of his proofs are even more elementary than anyone 
else's. His every word is chosen as carefully as a word in an A. E. Housman 
poem. But the lack of redundancy and the absence of occasional stretches of 
trivia can wear down the reader. I add that Baker does somewhat prepare the 
reader for Siegel-Shidlovskii in the short previous chapter (of independent 
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interest) where he proves his outstanding result on simultaneous ap
proximation to ee\ ..., e°n (where the 0t are nonzero rationals). 

Mahler has analyzed rather than synthesized the Siegel-Shidlovskiï proof. 
He carefully identifies many relevant vector spaces, and does all the 
differential algebra in a very systematic fashion, putting one little lemma after 
another until the nonvanishing of ShidlovskiFs determinant is proved. This 
determinant must be "not too small" since it is an algebraic number, but it is 
quite small by the nature of its construction. By comparing upper and lower 
estimates, one shows that a certain space spanned by function values has 
dimension "not much smaller" than a certain space spanned by functions. 
The theorem is proved by applying this fact to a space spanned by products 
of the original ^-functions (a weak version of Hubert's theorem on forms is 
also needed; Mahler proves it ab initio). Afterwards Mahler puts in an 
additional 37 pp. on applications of the Siegel-Shidlovskiï theory (this is 
almost missing in Baker). Not only does one learn many "little" facts of 
interest from Mahler that may be of use elsewhere, but one can also identify 
subproblems of research interest (see Mahler, p. 113). (Additional remarks: 
most of pp. 151-153 in Mahler correspond to the word "Plainly" on p. 11 of 
Baker; much of p. 97 in Mahler corresponds to the phrase "readily verified" 
on p. 110 of Baker.) Mahler and Baker both agree that the main outstanding 
problem here is to generalize the theory to a function class wider than 
^-functions. 

In going from Lindemann-Weierstrass to Siegel-Shidlovskiï the reader 
should be warned that a somewhat artificial (though ingenious and by now 
familiar) element has entered. The Siegel-Shidlovskiï proof requires that a 
certain linear combination of E-iunctions (with polynomials over the integers 
as coefficients) vanishes at 0 to a high order. In the work of the Lindemann-
Weierstrass era for the EAunctions e*2, with a, algebraic, these polynomials 
were determined in an explicit fashion, and reflected intrinsic properties of 
the functions. In the work of Siegel (and also in earlier work by Thue on a 
kindred subject) one simply expresses the desideratum as a system of a 
limited number of linear equations with a large number of undetermined 
coefficients and shows (via the pigeonhole principle) that with enough coef
ficients a solution in integers exists. There is nothing nonconstructive here, 
but something is lost. It would be nice if someone could at least do the 
algebraic independence of values of the Bessel functions without this device, 
especially since it often gives much stronger results on how well a transcen
dental number can be approximated by algebraic numbers. One very 
readable presentation of an "intrinsic method" is in Bundschuh [4]; other 
examples of this technique (that applies also to approximation of algebraic 
irrationals by rationals) are given in Mahler [13] and Baker [2]. Baker's proof 
that 21/3 cannot be too well approximated is especially noteworthy, though 
mentioned only briefly in his book. The rest of the subject "suffers" from 
more and more ad hoc ingenuity. 

The reader may next be curious about Hubert's seventh problem, to 
demonstrate that aside from trivial cases the number a^ is transcendental if a 
and (i are both algebraic and ƒ? is not a real rational. For example, 2V 2 ought 
to be transcendental. This problem was solved affirmatively in the mid 1930s 
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by A. O. Gelfond and (independently) T. Schneider. The result has now been 
brilliantly extended by Baker in several useful ways, both qualitatively and 
quantitatively. Qualitatively we have (Baker, p. 10) 

THEOREM. If ax, . . . , an are nonzero algebraic numbers such that 
log a t } , . . . , log an are linearly independent over the rationals9 then 1, 
log a l 9 . . . , log an are linearly independent over the field of all algebraic 
numbers. 

A host of previously unsolved transcendence questions can now be handled 
with ease. For example, one can show that m + In 3 is transcendental. Now 
let's examine the proof. The reader can easily go to Lemma 2 on p. 14 of 
Baker, but may then be jolted by the intricate ad hoc auxiliary function <&. 
And this is only the start of things to come. There is no superfluous chatter in 
Baker-his remark on p. 13 that "the inclusion of 1 in Theorem 2.1 . . . 
entails a relatively large amount of additional complexity . . . " should be 
taken to heart. The immediate remedy is to turn to Baker's paper [1] where 
the simpler (but still quite profound) version without the 1 is proved. But 
there is another path to understanding. 

Waldschmidt's book has not been mentioned yet. It omits the oft told tale 
of Lindemann-Weierstrass, except to state that result on p. 206, and 
concentrates almost entirely on applications of modern ad hoc methods to 
exponential functions alone. This book is addressed to the beginner, and 
starts with an excellent survey of prerequisite techniques in Chapter 1. Two 
solutions of Hilbert's 7th problem are given; that of Schneider in Chapter 2 
and that of Gelfond in Chapter 3. Perhaps the place to start is in Chapter 3 
on p. 71, where the Hermite-Lindemann theorem (a and ea are not both 
algebraic, unless a = 0) is proved as a warm-up. Assume a and ea axe both 
algebraic. Define F = FN(z) by F= P(x,y) and x = z, y = e\ where 
P(x9y) is a polynomial in x and y of degrees d{(N) and d2(N) respectively. 
Assume that N is large, and that both dx(ri) and d2(n) tend to oo as n -» oo. 
By the pigeonhole principle we can find coefficients for P that are not very 
large such that the first N derivatives of F vanish at z = 0 and z = a. For 
suitable large M the ratio 

GN(z)-FN{z)/[z»{z-a)M] 

is entire, and doesn't vanish for at least one of a and ea (say a). Now use the 
technique of Schwarz's lemma (i.e. the maximum modulus principle) to show 
GN(z) is small when \z\ < RM9 where RM is a suitable function of M that 
tends to oo as Af~> oo. Hence |GW(a)| is small. On the other hand, a 
nonzero algebraic number cannot be too small by a simple extension of the 
fact that there is no integer between 0 and 1. Thus we have both upper and 
lower bounds on |G)y(a)|. A contradiction is obtained by suitable choice of 
parameters. (Incidently, the motivation for choice of parameters is done very 
well in Waldschmidt, and there is also an excellent discussion of what further 
results can be squeezed out of this method.) 

The reader now knows a fundamental technique: use a (false) assumption 
that certain function values are algebraic and the Thue-Siegel pigeonholing 



1374 BOOK REVIEWS 

technique to create a polynomial in the functions that has large numbers of 
zeros (or zeros of high multiplicity, or both). Use the zeros à la Schwarz to 
show that the function is rather small, and oppose this to the fact that an 
algebraic number of fixed height cannot be too small. 

Even now [1] is tough. The reader may next wish to study pp. 102-109 in 
Gelfond [10], where a development of this idea is presented that might be 
called the "method of contagious zeros". Instead of finding directly a point at 
which the appropriate auxiliary function does not vanish (at least not to too 
great a multiplicity) we look at certain points near those at which it vanishes, 
and at which its value is algebraic. Since it must be quite small here, it must 
be 0 at these additional points. Now we have greatly increased the number of 
zeros, and may either apply our previous method (from a much improved 
vantage point) or iterate the current procedure again! Now the reader is well 
prepared to appreciate the motivation of Baker's method (which uses a large 
number of iterations) given on pp. 229-234 of Waldschmidt. The simple 
diagram on p. 233 (due to Baker) is quite helpful; I would have been happy to 
see it also in Baker's book. Upon reading [1] the reader should have confi
dence that he can absorb the proof (Baker, pp. 14-21; Waldschmidt pp. 
234-238) with full understanding. 

In Chapter 3 Baker goes on to prove in detail quantitative versions, in 
which explicit lower bounds are given for the (now known not to vanish) 
linear forms in logarithms. This leads to his spectacular applications to 
Diophantine equations and class numbers in Chapters 4 and 5. In Chapter 6 
we see that his methods also apply to elliptic functions. 

Before investigating further topics, I have two comments on notation and 
style. One traditionally measures the "size" of an algebraic number a by 
means of its height H (a) and degree d(a). The height is the maximum of the 
absolute values of the coefficients of the minimal polynomial of a over the 
integers. Thus, a fundamental problem of Diophantine approximation is how 
small \x - a\ can be in terms of H and d, given that H(a) < H and 
d(a) < d. In [11], S. Lang defines 

s(a) = size a = max(log b, \oa\) 

where b is the smallest positive rational integer such that ba is integral, and 
aa runs over all conjugates of a. For an a of fixed degree, a bound on H (a) 
yields a bound on s(a) and vice versa. Since (p. 6, Waldschmidt) 

- 2d(a)s(a) < log|a|, 

a bound on s(a) implies that \a\ cannot be too small. Waldschmidt follows 
Lang; we shall refer to their size by the French word taille. They also 
introduce t(P)9 the taille of the polynomial P, by 

t(P) = max(log H (P), 1 + deg P) 

(p. 27, Waldschmidt). The taille function satisfies various convenient inequal
ities, and its use leads to somewhat slicker proofs. I feel that height has a 
much more direct intuitive appeal, and that introducing taille is a pedagogical 
error. Baker and others get along quite well without it. However, this is a 
matter of taste, and the concept is certainly most appropriate in Chapter 5 of 
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Lang and Chapter 4 of Waldschmidt. Also, Waldschmidt does mention the 
alternatives in Exercise 4, p. 28. My second comment is that Waldschmidt 
sometimes does too good a job of estimating constants where a much weaker 
estimate, or even a 0 or < symbol would suffice; in contrast, Lang goes to 
the other extreme. This again is a matter of taste. Something can be said for 
writing everything out explicitly. For example, although I don't see that pp. 
150-152 of Waldschmidt give anything more than Baker's instant resolution 
of the problem on p. 124, Lemma 4,1 do feel that readers who breeze through 
Waldschmidt's Lemma 5.3.1 on pp. 147-149 might have gotten stuck on 
Lemma 3, p. 123 of Baker (which is the same). 

The question of whether a real number x is transcendental is a special case 
of the question "how well can x be approximated by algebraic numbers in 
terms of height and degree?" Obviously, one begins by studying how closely a 
fixed algebraic number can be approximated by algebraic numbers of lower 
degree. The theorem of Liouville is a first step, and its contrapositive yields 
explicit transcendental numbers. Liouville's work was successively deepened 
by Thue, Siegel, Dyson, Gelfond, Schneider, Roth and Wirsing. At present 
the high point of the theory is the following consequence of a deep /i-dimen-
sional theorem of W. M. Schmidt. 

THEOREM. If e > 0 and d(a) > n + I, where a is algebraic, then there are 
only finitely many algebraic numbers ft with d(/2) < n such that 

Aside from the e, the exponent is known to be best possible as a function of 
n. Waldschmidt omits this topic. Mahler handles only the Liouville level 
(Chapter 1) but does it superbly. Baker jumps directly into the proof of 
Schmidt's theorem, and finishes it completely in 15 1/2 pp., a miracle of 
exposition and brevity. (When the manuscript of Schmidt's proof first became 
available, it provided a Diophantine approximation seminar at the University 
of Illinois with material for an entire semester. Our impression was that it was 
very tightly organized, without a trace of fat.) I do feel that beginners are best 
advised to first master Thue's theorem (see Davenport [7] for an excellent 
exposition) and then Roth's theorem (see, for example, [5] or [16]). 

One may now attempt to classify all real numbers according to how well 
they can be approximated by algebraic numbers. The classification of Mahler 
(see Chapter 8 of Baker) into A, S9 T, and U numbers (each class of which 
has been further subdivided by later investigators, especially Mahler himself) 
seems the most illuminating. Here the spectrum extends from the hardest to 
approximate numbers at the A (or algebraic) end, to the easiest at the U (or 
Liouville) end. It is not at all obvious that there are no gaps in the spectrum. 
In fact, the mere existence of T numbers was not established until Schmidt 
proved this via Wirsing's theorem (Schmidt's own stronger theorem still seems 
to leave open the possibility of a mini-gap in the T-spectrum: see Baker, pp. 
92-94). It is not hard to show that almost all real numbers are S numbers. 
The main result here is Sprindzuk's theorem that almost all are S numbers of 
type 1. This is the theme of Sprindzuk's book [18]; here Baker does somewhat 
more in only eight pages! 
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Some very striking results on the algebraic independence of certain con
stants were obtained independently by Brownawell and Waldschmidt in the 
early 1970s. In particular, they showed that at least one of the numbers 
exp(e), exp(e2) is transcendental. A thorough and extensive account of this 
work (partly based on Tijdeman's estimate of the number of zeros of an 
exponential polynomial) is found in Chapters 6 and 7 of Waldschmidt. For a 
briefer account, see Chapter 12 of Baker. 

I am now ready to size up these books. Mahler's is primarily an attempt to 
expose the Siegel-Shidlovskiï theory in complete detail, in an appropriate 
framework, so that it is accessible to the general mathematical public. He 
succeeds admirably. In fact, the disclaimer on the back cover, to the effect 
that these are only rough notes, is quite inappropriate. Few books are written 
with greater clarity and precision. I noticed only very minor misprints and 
obscurities. 

On p. xii, line 15, the bottom letter of the right hand binomial coefficient 
should be D, not P; on p. 102, line 16, "wity" should be "with"; on p. 133, 
line 17, the subscript on the last D should be upper case; on p. 134, second 
line from the bottom, the assumption should be P(fx(a\ . . . , fm(a)) = 0. On 
p. 146, line 7, one should assume n > p'; also, line 10 should begin < \a\ + 
(n - \)b. On p. 184, line 14, the first reference should be to Mahler (1968a); 
on p. 166 lines 11 and 12 are incoherent. There is no index, but the table of 
contents is quite detailed. 

Mahler's book also points out possibilities for further research, especially 
by giving some partial results of J. Popken on functions satisfying algebraic 
rather than linear differential equations. 

Waldschmidt's book is the only one of the three obviously designed as a 
textbook, with a gentle pace, lots of exercises of varying degrees of difficulty, 
clear motivation, and an index. There are also suggestions for future research. 
By design, Waldschmidt focuses almost exclusively on the exponential 
function. Instructors basing a course on this text may wish to supplement it 
with, for example, the theorems of Liouville, Thue-Siegel-Roth, and Linde-
mann-Weierstrass. Although my ability to proofread a French text is rather 
limited, the favorable remarks above concerning Mahler's book seem to apply 
here as well. This is an excellent and practical introduction to modern 
transcendental number theory. 

Baker's book is the book on transcendental numbers. In only 128 pp. he 
covers a majority of those areas that have reached definitive results, presents 
most of the proofs in a complete yet far more compact form than hitherto 
available, and covers historical and bibliographical matters with great 
thoroughness and impeccable scholarship. As literature, it compares well with 
the finest works of Landau, Rademacher, and Titchmarsh. From its ency
clopedic coverage of the field I would have guessed it to be 400 pages at least; 
the actual small size also means that it is not expensive. Moreover, it is 
beautifully printed with large type, and seems devoid of misprints. (Some 
early copies had an obvious misprint on p. 85. Pages 141-144 are simply 
absent in the review copy-I trust this was an isolated incident.) One thing I 
did miss in Baker's book was the sort of freewheeling speculation provided by 
Lang in [11]. 
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Despite the Herculean labors it has inspired, transcendence theory is still in 
its infancy. The mere irrationality of Euler's constant, the number e + m> and 
even f (3) remain undecided. Perhaps we are presently like pre-Newtonian 
mathematicians, who with their method of exhaustion could determine 
certain areas, but never really grasped the fundamental theorem. 

Room remains for more books at all levels. Among the great difficulties in 
developing and organizing this subject is to find a really appropriate level of 
generality. I get the impression that Lang feels it is fairly high. However, most 
of the strong results achieved hitherto have been accomplished with supri-
singly elementary (though not easy) methods. To emphasize our ignorance 
again, I point out an interesting countable field K investigated by Corzatt [6\ 
that is much larger than the field of all algebraic numbers, and is not defined 
simply by "throwing a set of numbers into Q and taking algebraic closure." 
Here no one seems to be able to construct a finite set of numbers such that 
some one of them is not in K; it might even be nontrivial if finite is replaced 
by countable. There is also room for further development of the various 
fundamental "lemmas about polynomials" that the subject relies on (see 
Chapter 1 of either Mahler or Waldschmidt; Baker disperses them throughout 
his book). A significant development here is the theorem of Per Enflo on 
heights of products of polynomials in several variables. This work has been 
further developed and also simplified by H. L. Montgomery. 

In another direction, no one seems to have inquired into the arithmetical 
nature of the radii of convergence of the power series that arise in Pólya's 
theory of counting [3], [15]. 

I end by quoting a conjecture whose importance in transcendental number 
theory is comparable to that of the Riemann hypothesis in analytic number 
theory (Baker, p. 120; Waldschmidt, p. 208). 

CONJECTURE (SCHANUEL). If the complex numbers xl9...9xH are linearly 
independent over the rationals Q, then the field 

has transcendence degree at least n. 
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First order categorical logic, by Michael Makkai and Gonzalo E. Reyes, 
Lecture Notes in Math., vol. 611, Springer-Verlag, Berlin, Heidelberg, New 
York, 1977, viii + 301 pp. $14.30. 

The authors obtained new proofs for theorems of Ban and Deligne 
concerning topoi, and also obtained some basic new results in this area. Their 
proofs are applications of standard results and techniques of logic. Since the 
relationships between logic and category theory at this relatively deep level 
are not widely known, they wisely decided to give a general and self-
contained explanation of these relationships in addition to their proofs and 
results. The resulting work, despite its unfinished character typical of the 
lecture notes series, should hence be, at least in part, of considerably wider 
interest than a research paper on these results would have been. 

Before describing briefly the contents of the book, it is desirable to make 
some remarks on the role of categorical logic in mathematics. Categorical 
logic may be described as one of the algebraic ways of looking at logic. 
Algebraic logic arose, in part at least, from trying to conceive of logical 
notions and theorems in terms of universal algebraic concepts. Thus polyadic 
algebras (see Halmos [Hal]) and cylindric algebras (see Henkin, Monk, Tarski 
[HMT]) are algebraic versions of logic, and are algebraic structures (certain 
Boolean algebras with operators) which can be, and have been, studied in 
much the same way that one studies groups, rings, lattices, etc. At the same 
time that algebraic logic in this sense has been developing, category theory 
also developed, and in particular many facets of universal algebra were 
generalized (see Mac Lane [Mc L]). The interplay between category theory 
and logic may be considered to be another algebraization of logic. The 
present book gives one of the first systematic treatments of this kind of 
algebraization. 


